idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.11.2023 11:51

Wie ein Klimamodell eiszeitliche Klimaschwankungen abbilden und erklären kann

Jana Nitsch Pressestelle
MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

    Internationales Team von Forschenden zeigt erstmals einen Mechanismus auf, der starke Klimaschwankungen während der letzten Eiszeit erklärt

    Während der letzten Eiszeit, dem letzten glazialen Maximum vor rund 20.000 Jahren, unterlag das Klima im Nord-Atlantik viel größeren mehrhundertjährigen Schwankungen, als es in der jetzigen Warmzeit auf dieser Skala variiert. Darauf deuten Funde in Eis- und Ozeanbodenkernen hin. Forschende des MARUM – Zentrum für Marine Umweltwissenschaften und des Fachbereichs Geowissenschaften der Universität Bremen sowie der Vrije Universiteit Amsterdam (Niederlande) haben nun zum ersten Mal anhand eines Klimamodells nachgewiesen, dass interne Faktoren, wie die Temperatur- und Salzverteilung im Ozean, diese mehrhundertjährigen Schwankungen antreibt. Ihre Ergebnisse wurden nun in Science Advances veröffentlicht.

    Während der Mensch für die aktuelle globale Klimaerwärmung verantwortlich ist, hat unsere Erde im Laufe ihrer Geschichte stets natürliche Klimaschwankungen erlebt. Mögliche Antriebsfaktoren für diese Schwankungen wären etwa die Veränderungen in der Helligkeit der Sonne oder explosive Vulkanausbrüche, aber auch Wechselwirkungen innerhalb des Systems Atmosphäre-Ozean-Meereis. Fachleute sprechen hier von externen und internen Einflussfaktoren auf das Klimasystem. Wie lange solch eine Schwankung, auch Variabilität genannt, andauert, ist ganz unterschiedlich. In der Klimaforschung spielen solche Klimaschwankungen eine besondere Rolle, insbesondere auch um die Auswirkungen der aktuellen menschengemachten Klimaveränderungen noch besser zu verstehen. Über Klimaschwankungen, die über Jahrhunderte andauern, herrschte, bis auf ein paar wenige Ausnahmen, jedoch lange Unklarheit. Dr. Matthias Prange, Erstautor der Studie und Erdsystemmodellierer am MARUM und Fachbereich Geowissenschaften, erklärt: „Natürliche Klimavariabilität auf der mehrhundertjährigen Zeitskala ist bisher nicht gut verstanden. Zum einen gibt es keine Beobachtungszeitreihen, die solch lange Zeiträume abdecken, zum anderen existieren auch nur wenig ausreichend aufgelöste Proxydaten, die diese Zeitskala beleuchten können. Problematisch war zudem, dass Klimamodelle bislang große Schwierigkeiten hatten, die natürliche Klimavariabilität auf einer Zeitskala von 100 bis 1.000 Jahren abzubilden.“

    Natürliche Klimavariabilität während Hochglazial viermal stärker

    In den vergangenen Jahren entwickelten sich die Modelle jedoch weiter, und die Wissenschaftler:innen um Matthias Prange konnten nun ein bewährtes Klimamodell nutzen, um sich die natürlichen Klimaschwankungen auf einer Zeitskala von 100 bis 1.000 Jahre im letzten Hochglazial genauer anzuschauen. Vorhandene Paläodaten aus Eis- und Ozeanbodenbohrkernen zeigen, dass sich die natürliche Klimavariabilität in dem Zeitraum vor 23.000 bis 19.000 Jahren verstärkte, weltweit sogar viermal stärker war als im heutigen Holozän. Besonders im Nord-Atlantik war sie sehr ausgeprägt. „Dass wir nun über Klimamodelle verfügen, die solche Änderungen in der natürlichen Klimavariabilität abbilden können, spiegelt die großen Fortschritte in der Klimamodellierung wider, und offenbart auf beeindruckende Weise die Fähigkeiten der Modelle“, so Prange.

    Auf der Suche nach internen Antriebsfaktoren

    Belege für externe Antriebsfaktoren für die mehrhundertjährigen Klimaschwankungen gibt es nicht. Auf der Suche nach anderen Ursachen blickten die Wissenschaftler:innen auf mögliche interne Antriebfaktoren. „Wir nutzten das bekannte Community Earth System Model, kurz CESM1.2., das auch für die Prognosen des Weltklimarates genutzt wird, und fütterten es mit den Randbedingungen der letzten Eiszeit“, so Prange, „so gaben wir vor, wie hoch die Treibhausgaskonzentration war, wie die Inlandseisverteilung aussah und welche Erdbahnparameter vorherrschten.“

    Salz und Temperatur

    Durchlief die Eiszeit ihren Höhepunkt und war am stärksten ausgeprägt, konnten die Wissenschaftler:innen im Nord-Atlantik eine spontan ablaufende mehrhundertjährige Oszillation feststellen, die mit Schwankungen der sogenannten Atlantischen Meridionalen Umwälz-Zirkulation (kurz AMOC ) einhergeht. Ein Zyklus, bei dem die AMOC stärker und wieder schwächer wird, dauert dabei rund 400 Jahre. Hierbei wird aus dem Südatlantik salzarmes Wasser bis in den Nordatlantik transportiert. Dieser wird dadurch ebenso salzärmer, und das dortige Meerwasser wird weniger schwer, es sinkt nicht mehr so stark in die Tiefe – wodurch weniger Tiefenwasser produziert und gen Südatlantik transportiert wird.

    Der zyklische Prozess ist dabei selbsterhaltend, da die schwächere AMOC dazu führt, dass wiederum weniger salzarmes Wasser aus dem Südatlantik nach Norden transportiert wird. Der Salzgehalt im Nordatlantik kann folglich wieder steigen, und es wird mehr Tiefenwasser produziert. Matthias Prange erklärt: „Diese Prozesse deuten darauf hin, dass die mehrhundertjährige Klimavariabilität eng mit dem unterschiedlichen Salzgehalt und der Temperatur in der Wassersäule zusammenhängt“, und obwohl die Amplituden der Schwankungen niedrig sind, zeigen sich deutliche Auswirkungen auf die Ausbreitung des Nordatlantischen Meereises und auf die Temperaturen in Grönland. „So schwanken die dortigen Jahresmitteltemperaturen um vier Grad Celsius infolge der AMOC-Oszillationen“, ergänzt Prange.

    Hochaufgelöste Paläodaten

    Um diese modellierten Funde zu stützen, untersuchten die Wissenschaftler:innen die damalige Meeresoberflächen-Wassertemperatur. „Hierzu haben wir sämtliche hochaufgelösten Rekonstruktionen aus marinem Sediment des Nordatlantiks zusammengefügt und analysiert“, so Dr. Lukas Jonkers, Mit-Autor der Studie und Mikropaläontologe am MARUM, „Hochaufgelöst heißt hier Datenpunkte, die durchschnittlich nicht weiter als 200 Jahre auseinander liegen, maximal 1.000 Jahre.“ Die untersuchten Paläoarchive belegen eine wiederkehrende Temperaturschwankung des Oberflächenwassers im Meer alle 150 bis 1.000 Jahre während des letzten Glazialen Maximums – passend zur modellierten mehrhundertjährigen Klimavariabilität mit internen Antriebsfaktoren.

    Verständnis von Rückkopplungsprozessen wichtig

    Die jüngsten Forschungsergebnisse unterstreichen, wie wichtig es ist, Rückkopplungsprozesse im Klimasystem genauer zu untersuchen und zu verstehen. Matthias Prange betont, dass ein tieferes Verständnis von Klimaschwankungen auf verschiedenen Zeitskalen unerlässlich ist, da diese Auswirkungen auf den künftigen Klimawandel haben und somit für Gesellschaften zu unerwarteten und unangenehmen Überraschungen führen könnten. Diese Erkenntnisse fließen auch in die Arbeit des Exzellenzclusters „Der Ozeanboden - Unerforschte Schnittstelle des Meeres“ ein, der am MARUM angesiedelt ist.

    Das MARUM gewinnt grundlegende wissenschaftliche Erkenntnisse über die Rolle des Ozeans und des Meeresbodens im gesamten Erdsystem. Die Dynamik des Ozeans und des Meeresbodens prägen durch Wechselwirkungen von geologischen, physikalischen, biologischen und chemischen Prozessen maßgeblich das gesamte Erdsystem. Dadurch werden das Klima sowie der globale Kohlenstoffkreislauf beeinflusst und es entstehen einzigartige biologische Systeme. Das MARUM steht für grundlagenorientierte und ergebnisoffene Forschung in Verantwortung vor der Gesellschaft, zum Wohl der Meeresumwelt und im Sinne der Nachhaltigkeitsziele der Vereinten Nationen. Es veröffentlicht seine qualitätsgeprüften, wissenschaftlichen Daten und macht diese frei zugänglich. Das MARUM informiert die Öffentlichkeit über neue Erkenntnisse der Meeresumwelt, und stellt im Dialog mit der Gesellschaft Handlungswissen bereit. Kooperationen des MARUM mit Unternehmen und Industriepartnern erfolgen unter Wahrung seines Ziels zum Schutz der Meeresumwelt.


    Wissenschaftliche Ansprechpartner:

    Dr. Matthias Prange
    Geosystemmodellierung
    E-Mail: mprange@marum.de


    Originalpublikation:

    Matthias Prange et al. ,A multicentennial mode of North Atlantic climate variability throughout the Last Glacial Maximum.Sci. Adv.9,eadh1106(2023).DOI:10.1126/sciadv.adh1106


    Weitere Informationen:

    https://www.marum.de/Entdecken/Klimaschwankungen.html Link zur Pressemitteilung auf der MARUM-Webseite
    https://www.marum.de/Ozeanboden.html Link zum 'Ozeanboden'-Cluster
    https://www.palmod.de/home Link zum Palmod-Projekt


    Bilder

    Ein internationales Team von Wissenschaftler:innen untersuchte die natürliche, mehrhundertjährige Klimavariabilität vor 23.000 bis 19.000 Jahren, Klimamodell- und Paläodaten zeigen, dass diese besonders im subpolaren Nord-Atlantik ausgeprägt war.
    Ein internationales Team von Wissenschaftler:innen untersuchte die natürliche, mehrhundertjährige Kl ...
    V. Diekamp
    MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen; V. Diekamp

    Einfluss der eiszeitlichen mehrhundertjährigen Klimaschwankung auf Lufttemperaturen im nordatlantischen Raum (in Grad Celsius). Gezeigt sind die Temperaturunterschiede zwischen Warm- und Kaltphase der Klimaschwankung.
    Einfluss der eiszeitlichen mehrhundertjährigen Klimaschwankung auf Lufttemperaturen im nordatlantisc ...
    M.Prange et al
    MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen; M. Prange et al.


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Geowissenschaften, Meer / Klima, Physik / Astronomie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Ein internationales Team von Wissenschaftler:innen untersuchte die natürliche, mehrhundertjährige Klimavariabilität vor 23.000 bis 19.000 Jahren, Klimamodell- und Paläodaten zeigen, dass diese besonders im subpolaren Nord-Atlantik ausgeprägt war.


    Zum Download

    x

    Einfluss der eiszeitlichen mehrhundertjährigen Klimaschwankung auf Lufttemperaturen im nordatlantischen Raum (in Grad Celsius). Gezeigt sind die Temperaturunterschiede zwischen Warm- und Kaltphase der Klimaschwankung.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).