idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.11.2023 13:34

Zellfreie Suche nach neuen Antibiotika durch Kopplung von Synthetischer Biologie mit KI

Dr. Virginia Geisel Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für terrestrische Mikrobiologie

    Die zunehmende Resistenz von Bakterien gegen Antibiotika stellt eine wachsende globale Gesundheitsbedrohung dar. Forschende des Max-Planck-Instituts für terrestrische Mikrobiologie in Marburg entwickelten nun mit Hilfe der Synthetischen Biologie und Künstlicher Intelligenz (KI) einen effizienteren Ansatz zur Entdeckung und Herstellung neuer antimikrobieller Peptide, die gegen ein breites Spektrum von Bakterien wirken können.

    Bioaktive Peptide spielen eine Schlüsselrolle in Gesundheit und Medizin. Derzeit sind mehr als 80 peptidbasierte Medikamente im Einsatz, die alle aus natürlichen Quellen isoliert wurden. Es wird jedoch geschätzt, dass Antibiotikaresistenzen jedes Jahr weltweit mehr als eine Million Todesfälle verursachen. Es wird erwartet, dass diese Zahl bis 2050 auf 10 Millionen ansteigen wird, so dass dringend neue Methoden benötigt werden, um die Entwicklung neuer antimikrobieller Wirkstoffe zu beschleunigen. Ein ungenutztes Potenzial liegt im nicht-natürlichen Bereich, wo schätzungsweise eine Anzahl von 20 hoch 10 bis zu 20 hoch 30 verschiedene Peptide noch unerschlossen sind.

    In Zusammenarbeit mit mehreren Labors am MPI für terrestrische Mikrobiologie, der Universität Marburg, dem MPI für Biophysik, dem Institut für Mikrobiologie der Bundeswehr, dem iLung Institut und INRAe Frankreich hat ein Team von Wissenschaftlern des Max-Planck-Instituts unter der Leitung von Prof. Tobias Erb eine neue Pipeline für die Entwicklung bioaktiver Peptide entwickelt.

    "Beim Deep Learning lernt ein neuronales Netzwerk mit Algorithmen, die durch das menschliche Gehirn inspiriert sind, aus großen Datenmengen. Diese Art des maschinellen Lernens ist für die Entdeckung von Peptiden und für das De-novo-Design sehr vielversprechend. In der Regel folgt darauf jedoch die chemische Herstellung von Peptiden für experimentelle Tests, was recht schwierig und zeitaufwändig ist. Die Zahl der Peptide, die chemisch hergestellt werden können, ist daher sehr begrenzt", erklärt Amir Pandi, Doctoral Student in der Arbeitsgruppe von Prof. Dr. Tobias Erb und Erstautor der Studie.

    Um diese Einschränkungen zu überwinden, entwickelte das Forscherteam eine zellfreie Proteinsynthese (CFPS) für die schnelle und kostengünstige Herstellung von antimikrobiellen Peptiden (AMPs) direkt aus DNA-Templates. Das neue Protokoll bietet eine effiziente und kostengünstige Hochdurchsatzmethode für das AMP-Screening.

    Das Team verwendete zunächst sogenanntes generatives Deep Learning, um Tausende von AMPs de novo zu entwerfen, und anschließend prädiktives Deep Learning, um diese auf 500 Kandidaten einzugrenzen. Von diesen Kandidaten wurden durch das Screening mit der zellfreien Pipeline 30 funktionelle AMPs identifiziert, die die Forscher durch Molekulardynamiksimulationen und die Bestimmung ihrer antimikrobiellen Aktivität und Toxizität weiter charakterisierten.

    Bemerkenswerterweise zeigten sechs der AMPs ein breites Wirkungsspektrum gegen multiresistente Erreger und es kam zu keiner bakteriellen Resistenzentwicklung.

    "Wir haben von der Kombination aus zellfreier synthetischer Biologie, künstlicher Intelligenz und Hochdurchsatzverfahren sehr profitiert. Indem wir die Anzahl der Kandidaten erhöhen, die in weniger als 24 Stunden experimentell getestet werden können, steigt die Chance, aktive AMPs zu finden", sagt Amir Pandi. "Unsere CFPS-Pipeline ergänzt nicht nur die jüngsten Fortschritte im computergestützten Wirkstoffdesign. Sie hat auch das Potenzial, die Beziehung zwischen Design und Funktion bioaktiver Peptide schneller und kostengünstiger zu erforschen". Tobias Erb fügt hinzu: "Diese neue Methode an der Schnittstelle von synthetischer Biologie und maschinellem Lernen wird für Wissenschaftlerinnen und Wissenschaftler interessant sein, die in den Bereichen Biomedizin und bioaktiven Peptidengineering arbeiten."

    Zu den nächsten Schritten gehören die weitere Verbesserung der Ausbeute bei der Peptidproduktion sowie der Einsatz von KI und Ansätzen der synthetischen Biologie, um neue AMPs zu entwickeln, die stabiler und weniger toxisch sind oder eine spezifische Wirkungsweise haben. Die Forscher planen auch den Einsatz erweiterter generativer KI-Modelle. Dabei lernt die Maschine molekulare Repräsentationen für gewünschte Eigenschaften, was die Erfolgsquote bei der Identifizierung von Wirkstoffkandidaten erhöhen würde.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr.Tobias Erb

    Prof. Dr. Tobias Erb
    Director +49 6421 178-700
    toerb@mpi-marburg.mpg.de
    Max-Planck-Institut für terrestrische Mikrobiologie, Marburg


    Originalpublikation:

    Pandi; A.; Adam, D.; Zare, A.; Trinh, V.T.; Schaefer, S.L.; Burt, M.; Klabunde, B.; Bobkova, E.; Kushwaha, M.; Foroughijabbari, Y.; Braun, P.; Spahn, C.; Preußer, C.; Pogge von Strandmann, E.; Bode, H.B.; v. Buttlar, H.; Bertrams, W.; Jung, A. L.; Abendroth, F.; Schmeck, B.; Hummer, G.; Vázquez, O.; Erb. T.

    Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides.
    Nature Communications 14, 7197 (2023)
    DOI https://doi.org/10.1038/s41467-023-42434-9


    Bilder

    Illustration zur Kopplung von Deep Learning und Synthetischer Biologie zur Wirkstoffsuche
    Illustration zur Kopplung von Deep Learning und Synthetischer Biologie zur Wirkstoffsuche
    Elizaveta Bobkova
    Max-Planck-Institut für terrestrische Mikrobiologie/Bobkova


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Chemie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
    überregional
    Buntes aus der Wissenschaft, Forschungsergebnisse
    Deutsch


     

    Illustration zur Kopplung von Deep Learning und Synthetischer Biologie zur Wirkstoffsuche


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).