Forschende entwickeln ein KI Modell, das vorhersagen kann, an welchen Stellen ein Wirkstoffmolekül chemisch verändert werden kann.
Ein Team aus Forschenden der LMU, der ETH Zürich und von Roche Pharma Research and Early Development (pRED) Basel hat ein innovatives Verfahren entwickelt, das mithilfe künstlicher Intelligenz bei der Bestimmung der optimalen Methode zur Synthese von Wirkstoffmolekülen hilft. „Das Verfahren hat das Potenzial, die Anzahl der benötigten Laborversuche erheblich zu reduzieren, was sowohl die Effizienz als auch die Nachhaltigkeit in der chemischen Synthese erhöht”, sagt David Nippa, Erstautor der dazu im Fachmagazin Nature Chemistry veröffentlichten Studie. Nippa ist Doktorand in der Arbeitsgruppe von Dr. David Konrad an der Fakultät für Chemie und Pharmazie der LMU und bei Roche.
Pharmazeutische Wirkstoffe bestehen in der Regel aus einem Gerüst, an das funktionelle Gruppen gebunden sind. Diese Gruppen ermöglichen eine spezifische biologische Funktion. Um neue oder verbesserte medizinische Wirkungen zu erzielen, werden funktionelle Gruppen an neuen Stellen des Gerüsts platziert. Dieser Prozess ist jedoch in der Chemie besonders schwierig, da die Gerüste, die hauptsächlich aus Kohlenstoff- und Wasserstoffatomen bestehen, selbst kaum reaktiv sind. Eine Methode zur Aktivierung des Gerüsts ist die sogenannte Borylierung. Bei diesem Prozess wird eine chemische Gruppe, die das Element Bor enthält, an ein Kohlenstoffatom des Gerüsts gebunden. Diese Bor-Gruppe kann dann durch eine Vielzahl von medizinisch wirksamen Gruppen ersetzt werden. Obwohl die Borylierung ein großes Potenzial hat, ist sie im Labor schwer zu kontrollieren.
David Nippa entwickelte zusammen mit Kenneth Atz, Doktorand an der ETH Zürich, ein KI-Modell, dass auf Daten aus vertrauenswürdigen wissenschaftlichen Arbeiten und Experimenten eines automatisierten Labors bei Roche trainiert wurde. Es kann bei jeglichen Molekülen erfolgreich vorhersagen, an welchen Stellen eine Borylierung möglich ist und liefert die optimalen Bedingungen für die Aktivierungsreaktionen. „Interessanterweise verbesserten sich die Vorhersagen, wenn auch die dreidimensionalen Informationen der Ausgangsstoffe und nicht nur ihre zweidimensionalen chemischen Formeln berücksichtigt wurden”, so Atz.
Die Methode wurde bereits erfolgreich eingesetzt, um in bestehenden Wirkstoffen Stellen zu finden, an denen zusätzliche aktive Gruppen eingeführt werden können. Dies hilft den Forschenden, schneller neue und wirksamere Varianten von bekannten Medikamentenwirkstoffen zu entwickeln.
David Nippa
Department of Pharmacy
Ludwig-Maximilians-Universität München
E-Mail: david.nippa@cup.lmu.de
David Nippa & Kenneth Atz et al.: Enabling Late-Stage Drug Diversification by High-Throughput Experimentation with Geometric Deep Learning. Nature Chemistry 2023
https://doi.org/10.1038/s41557-023-01360-5
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).