idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.12.2023 17:00

A novel microscope operates on the quantum state of single electrons

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Physicists at the University of Regensburg have found a way to manipulate the quantum state of individual electrons using a microscope with atomic resolution. The results of the study have now been published in the renowned journal Nature.

    We, and everything around us consists of molecules. The molecules are so tiny that even a speck of dust contains countless of them. The more fascinating it is that nowadays it is routinely possible to precisely image such molecules with a microscope called atomic force microscope. It works quite different form an optical microscope: it is based on sensing tiny forces between a tip and the molecule under study (see illustration). Thereby, one can even image the internal structure of a molecule. Although one can watch the molecule this way, this does not imply knowing all its different properties. For instance, it is already very hard to determine, which kind of atoms the molecule consists of.
    Luckily, there are other tools around that can determine the composition of molecules. One of them is electron spin resonance, which is based on similar principles as an MRI scanner in medicine. In electron spin resonance one usually needs, however, countless of molecules to obtain a signal that is large enough to be detectable. This way, one cannot access the properties of every molecule, but only their average.
    Researchers at the University of Regensburg, led by Prof Dr Jascha Repp from the Institute of Experimental and Applied Physics at the UR, have now integrated electron spin resonance into atomic force microscopy. Importantly, the electron spin resonance is detected directly with the microscope’s tip, such that the signal comes from one individual molecule only. This way, they can characterize single molecules in a one-by-one fashion. This allowed to straightforwardly determine, of which atoms the molecule they just imaged is composed. “We could even discriminate molecules that do not differ in the type of atoms, that they were composed of, but only in their isotopes, namely, in the composition of the atoms' nuclei”, adds Lisanne Sellies, the first author of this study.
    “Yet, we are even more intrigued by another possibility that electron spin resonance entails:” explains Prof. Dr. Repp, “this technique can be used to operate the spin-quantum state of the electrons present in the molecule.” In the illustration, this is depicted as the little colored arrows. But why is this interesting? Quantum computers store and process information that is encoded in a quantum state. To perform a calculation, quantum computers require to manipulate a quantum state without losing the information by so-called decoherence. The researchers in Regensburg showed that with their new technique they could operate the quantum state of the spin in a single molecule many times before the state decohered. Since the microscopy technique allows to image the individual neighborhood of the molecule, the newly developed technique could help to understand how decoherence in a quantum computer depends on the atomic-scale environment, and – eventually – how to avoid it.

    The project was funded by the ERC Synergy Grant MolDAM (no. 951519) and the German Research Foundation (no. RE2669/6-2).


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Jascha Repp
    Faculty of Physics
    University of Regensburg
    Phone: +49 (0)941 943-4201
    E-Mail: Jascha.Repp@physik.uni-regensburg.de
    Website: https://www.uni-regensburg.de/physics/repp/home/index.html


    Originalpublikation:

    Lisanne Sellies, Raffael Spachtholz, Sonja Bleher, Jakob Eckrich, Philipp Scheuerer, Jascha Repp, „Single-molecule electron spin resonance by means of atomic force microscopy”, Nature (2023). DOI:10.1038/s41586-023-06754-6
    https://doi.org/10.1038/s41586-023-06754-6


    Bilder

    The white structure at the bottom represents a single molecule, the arrows its spin quantum state and the wavy lines the radio-frequency magnetic field needed for the electron spin resonance, which is detected by the tip of the atomic force microscope.
    The white structure at the bottom represents a single molecule, the arrows its spin quantum state an ...
    Eugenio Vázquez
    Eugenio Vázquez


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    The white structure at the bottom represents a single molecule, the arrows its spin quantum state and the wavy lines the radio-frequency magnetic field needed for the electron spin resonance, which is detected by the tip of the atomic force microscope.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).