idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.12.2023 14:25

Novel compounds promise success in the fight against tuberculosis and depression

Nicole Gierig Pressestelle
Technische Universität Dresden

    Prof. Bernd Plietker and his research group at the Chair of Organic Chemistry I at TUD have specifically developed a class of natural substances - polyprenylated polycyclic acylphloroglucinols (PPAP for short). Due to its properties, the resulting derivative PPAP53 is characterized by great potential for application in a medicinal chemistry context. In collaboration with several research institutions, such as the Universities of Ulm and Mainz, it has been shown that PPAP53 is very promising in the fight against multi-resistant tuberculosis and opens up new treatment perspectives for neurogenerative diseases.

    The results of the extensive research work were published in two consecutive papers in the Journal of Medicinal Chemistry.

    Tuberculosis (TB) is a prevalent infectious disease that affects millions of people each year. It was previously the leading cause of death from a single pathogen before the COVID-19 pandemic. Detecting TB early is challenging because the bacterium Mycobacterium tuberculosis (Mtb) can hide in human macrophages, which are part of the immune system. This makes it difficult for conventional diagnostic methods to detect the infection until the macrophages collapse, leading to "open tuberculosis". TB can be treated with common antibiotics, but the repeated exposure of Mtb to these drugs can result in the development of multidrug-resistant and extensively drug-resistant strains. This highlights the importance of finding alternative treatment options to combat this challenging disease.

    A few years ago, Prof. Bernd Plietker made a promising new class of natural substance-based active compounds accessible by developing a short and parallelizable total synthesis: polyprenylated polycyclic acylphloroglucinols (PPAP for short). "Initial studies on the antimicrobial activity of the non-natural derivatives we developed already indicated that this class of molecules offers the potential for application in a medicinal chemistry context through interactions with membrane-associated proteins," explains Bernd Plietker, who has held the Chair of Organic Chemistry I at TU Dresden since 2020.
    Building on these initial results, he and his team, in cooperation with Prof. Steffen Stenger from Ulm University Hospital, have now been able to show that a specific PPAP, PPAP53, is able to activate human macrophages to fight resistant tuberculosis bacteria without being toxic to the macrophages themselves. Fighting TB within macrophages is a promising way of successfully combating the infection at an early stage and thus avoiding the development of resistance long before the symptoms of infection appear. Several tests have shown that PPAP53 exclusively fights intracellular TB by passing through or activating the cell membrane without damaging the macrophage. A further advantage of PPAP53 over existing drugs is that it does not lead to an increase in the concentration of liver enzymes. This prevents a decrease in the effectiveness of the treatment due to the undesired degradation of the active substance in the liver. In addition, cross-resistance with other therapeutic agents is avoided, which benefits the overall treatment of tuberculosis.

    In a second publication, the assumption was investigated that the observed PPAP-dependent activation of macrophages could be the result of an interaction with membrane-associated receptors or channels. To this end, TRPC6 ion channels, which are responsible for the targeted transport of calcium ions through the cell membrane, were investigated. They are mainly found in neuronal cells and the adrenal cortex. "In a combination of biological experiments and with the support of modern artificial intelligence algorithms, we were able to show that PPAP53 binds highly specifically to the C-terminus of this TRPC channel and opens it for calcium transport. PPAP53 thus has a similar effect to the well-known active ingredient hyperforin, which is derived from St. John's wort and is also used as an antidepressant. In contrast to hyperforin, however, PPAP53 does not cause an increase in liver enzymes and thus avoids cross-resistance. The complete water solubility of PPAP53 significantly increases its bioavailability, while the specific substitution on the natural substance body achieves complete light stability. Phototoxic side effects were one of the main disadvantages of hyperforin, in addition to the increase in liver enzyme concentrations. For the first time, we have now been able to derive a molecular understanding of the structure-activity relationship of our active substance PPAP53. The unique properties of PPAP53 open up fascinating perspectives in various medical fields, for example in macrophage therapy, oncology and neurological diseases," says first author Philipp Pelsalz, explaining the potential of the new active compound.

    Original publications:
    Philipp Peslalz, Mark Grieshober, Frank Kraus, Anton Bleisch, Flavia Izzo, Dajana Lichtenstein, Helen Hammer, Andreas Vorbach, Kyoko Momoi, Ulrich M. Zanger, Heike Brötz-Oesterhelt, Albert Braeuning, Bernd Plietker, and Steffen Stenger. Unnatural Endotype B PPAPs as Novel Compounds with Activity against Mycobacterium tuberculosis. Journal of Medicinal Chemistry 2023 66 (22), 15073-15083 https://doi.org/10.1021/acs.jmedchem.3c01172

    Philipp Peslalz, Frank Kraus, Flavia Izzo, Anton Bleisch, Yamina El Hamdaoui, Ina Schulz, Andreas M. Kany, Anna K. H. Hirsch, Kristina Friedland, and Bernd Plietker. Selective Activation of a TRPC6 Ion Channel Over TRPC3 by Metalated Type-B Polycyclic Polyprenylated Acylphloroglucinols. Journal of Medicinal Chemistry 2023 66 (22), 15061-15072. https://doi.org/10.1021/acs.jmedchem.3c01170


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Bernd Plietker
    Chair of Organic Chemistry
    TU Dresden
    Tel. +49 351 463-332788
    Email: bernd.plietker@tu-dresden.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Medizin, Psychologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).