idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.12.2023 10:00

Die Geburtsstätten von Sternen in der Whirlpool-Galaxie

Dr. Markus Nielbock (MPIA Presse- und Öffentlichkeitsarbeit) Öffentlichkeitsarbeit
Max-Planck-Institut für Astronomie

    Ein internationales Forschungsteam unter der Leitung von Astronominnen des Max-Planck-Instituts für Astronomie (MPIA) hat in einer Galaxie, die nicht die Milchstraße ist, großräumig kaltes und dichtes Gas zukünftiger Sternkinderstuben in einer bislang unübertroffenen Detailschärfe kartiert. Die Beobachtungen mit dem NOEMA-Interferometer decken für diese Art von Messungen einen bislang unerreicht weiten Bereich einer Galaxie ab, in denen unterschiedliche Bedingungen für die Sternentstehung herrschen. Die Daten ermöglichen den Forschenden erstmals, die Frühphasen der Sternentstehung außerhalb der Milchstraße auf Größenskalen von einzelnen sternbildenden Gaswolken im Detail zu untersuchen.

    Paradoxerweise beginnt die Entwicklung von heißen Sternen in einigen der kältesten Bereiche des Universums, nämlich in dichten Wolken aus Gas und Staub, die ganze Galaxien durchziehen. „Um die Frühphasen der Sternentstehung zu untersuchen, in denen sich Gas allmählich verdichtet, um schließlich Sterne zu produzieren, müssen wir diese Bereiche zunächst finden“, sagt Sophia Stuber, Doktorandin am Max-Planck-Institut für Astronomie (MPIA) in Heidelberg und Erstautorin des Forschungsartikels, der bei Astronomy & Astrophysics erscheint. „Dafür vermessen wir gewöhnlich die Strahlung bestimmter Moleküle, die besonders häufig in diesen sehr kalten und dichten Zonen vorkommen.“

    Moleküle als chemische Sonden

    Bei der Erforschung der Sternentstehung in der Milchstraße benutzen Astronominnen und Astronomen dafür gewöhnlich Moleküle wie HCN (Blausäure oder Cyanwasserstoff) und N2H+ (Diazenylium) als chemische Sonden. „Aber erst jetzt konnten wir diese Signaturen sehr detailliert auch über einen weiten Bereich in einer Galaxie außerhalb der Milchstraße messen, der verschiedene Zonen mit unterschiedlichen Bedingungen abdeckt“, erläutert Eva Schinnerer, Forschungsgruppenleiterin am MPIA. „Schon der erste Blick verrät uns, dass die beiden Moleküle zwar etwa gleich gut dichtes Gas sichtbar machen, sie aber auch interessante Unterschiede offenbaren.“

    Durch Kollisionen mit den reichhaltig vorhandenen Wasserstoffmolekülen, die selbst aber schwer nachzuweisen sind, werden andere Moleküle in Rotation versetzt. Reduziert sich danach deren Rotationsgeschwindigkeit, senden sie Strahlung mit charakteristischen Wellenlängen aus. Für die beiden oben genannten Moleküle liegen die bei etwa drei Millimetern.

    Die Messungen gehören zu einem großen Beobachtungsprogramm mit dem Namen SWAN (Surveying the Whirlpool at Arcsecond with NOEMA), das Schinnerer zusammen mit Frank Bigiel von der Universität Bonn leitet. Mit dem Northern Extended Millimeter Array (NOEMA), einem Radiointerferometer in den französischen Alpen, wollen sie die Verteilung von mehreren Molekülen in den inneren 20.000 Lichtjahren der Whirlpool-Galaxie (Messier 51) studieren – darunter auch Cyanwasserstoff und Diazenylium. Zu den 214 Stunden Beobachtungszeit aus diesem Programm kommen noch etwa 70 Stunden aus anderen Beobachtungskampagnen mit dem 30-Meter-Einzelteleskop in Südspanien hinzu, die die Daten ergänzen.

    „Da Daten von Radiointerferometern sehr viel komplexer als Teleskopbilder sind, hat das Verarbeiten und Aufbereiten der Daten noch einmal etwa ein Jahr beansprucht“, sagt Jérôme Pety vom Institut de Radioastronomie Millimétrique (IRAM), das die beiden genutzten Teleskope betreibt. Interferometer-Teleskope wie das NOEMA bestehen aus mehreren Einzelantennen, die zusammen eine Detailschärfe wie ein Teleskop erzielen, dessen Hauptspiegeldurchmesser dem Abstand zwischen den einzelnen Teleskopen entspräche.

    Gaseigenschaften hängen von der Umgebung ab

    Da wir diese Galaxie in einer Entfernung von nur rund 28 Millionen Lichtjahren von oben sehen, lassen sich sogar Merkmale einzelner Gaswolken in so unterschiedlichen Bereichen wie dem Zentrum und den Spiralarmen untersuchen. „Diesen Umstand nutzten wir, um herauszufinden, wie gut die beiden Gase die dichten Wolken in dieser Galaxie für uns aufspüren, und ob sie gleich gut dafür geeignet sind“, erklärt Stuber.

    Während die Intensität der Strahlung von Cyanwasserstoff und Diazenylium über die Spiralarme hinweg in gleichem Maße ansteigt und abfällt und somit gleich gute Ergebnisse für die Bestimmung der Gasdichte liefert, finden die Astronominnen und Astronomen im Zentralbereich der Galaxie eine deutliche Abweichung. Im Vergleich zum Diazenylium steigt die Helligkeit der Emission des Cyanwasserstoffs dort stärker an. Es scheint dort also offenbar einen Mechanismus zu geben, der den Cyanwasserstoff zusätzlich zum Leuchten anregt, das Diazenylium aber nicht.

    „Wir vermuten, dass der aktive galaktische Kern in der Whirlpool-Galaxie dafür verantwortlich ist“, sagt Schinnerer. Dabei handelt es sich um eine energiereiche Zone rund um das zentrale massereiche Schwarze Loch. Bevor das Gas in das Schwarze Loch fällt, bildet es eine Scheibe aus, wird auf hohe Geschwindigkeiten beschleunigt und durch Reibung auf Tausende Grad aufgeheizt. Dabei sendet es intensive Strahlung aus. Diese könnte in der Tat teilweise für eine zusätzliche Emission der Cyanwasserstoff-Moleküle sorgen. „Was aber genau den Unterschied der beiden Gase ausmacht, müssen wir noch erforschen“, ergänzt Schinnerer.

    Eine Herausforderung, die sich lohnt

    Es scheint also, dass zumindest im Zentralbereich der Whirlpool-Galaxie Diazenylium die zuverlässigere Dichtesonde gegenüber Cyanwasserstoff ist. Leider leuchtet es dafür bei gleicher Gasdichte im Durchschnitt fünfmal schwächer, was den Messaufwand erheblich steigert. Die benötigte zusätzliche Empfindlichkeit wird durch eine deutlich längere Beobachtungszeit erkauft.
    Die Aussicht, nun die Frühphasen auch im Detail in Galaxien außerhalb der Milchstraße erforschen zu können, lässt Wissenschaftlerinnen und Wissenschaftler jedoch hoffen. Denn solch einen übersichtlichen Anblick auf die Whirlpool-Galaxie haben wir für die Milchstraße nicht. Die Molekülwolken und Sternentstehungsgebiete sind hier zwar näher. Dafür ist es jedoch ungleich schwieriger, die exakte Struktur und Lage der Spiralarme und Wolken zu ermitteln.

    „Obwohl wir von dem detaillierten Beobachtungsprogramm mit der Whirlpool-Galaxie sehr viel lernen können, ist es in gewisser Hinsicht ein Pilotprojekt“, sagt Stuber. „Gerne würden wir in Zukunft noch weitere Galaxien auf diese Weise erforschen.“ Diese Aussicht scheitert jedoch derzeit an den technischen Fähigkeiten. Die Whirlpool-Galaxie leuchtet im Licht der chemischen Sonden außerordentlich hell. Für weitere Galaxien müssen die Teleskope und Messinstrumente jedoch noch weit empfindlicher sein.

    „So leistungsfähig wird am ehesten das ngVLA (next-generation Very Large Array) sein, das derzeit in Planung ist“, hofft Schinnerer. Wenn alles gut läuft, wird es aber erst in etwa 10 Jahren zur Verfügung stehen. Bis dahin dient die Whirlpool-Galaxie als ergiebiges Labor, um die Sternentstehung im galaktischen Maßstab zu erforschen.

    Hintergrundinformationen

    Die an dieser Studie beteiligten MPIA-Wissenschaftler sind Sophia Stuber und Eva Schinnerer.

    Die weiteren Forschenden sind Jerome Pety (IRAM und Observatoire de Paris/PSL, Frankreich [PSL]), Frank Bigiel (Universität Bonn, Deutschland [UB]), Antonio Usero (Observatorio Astronómica Nacional/IGN, Madrid, Spanien [OAN]), Ivana Bešlić (PSL), Miguel Querejeta (OAN), J. María Jiménez-Donaire (OAN und Observatorio de Yebes/IGN, Guadalajara, Spanien), Adam Leroy (Ohio State University, Columbus, USA), Jakob den Brok (Center for Astrophysics, Harvard & Smithsonian, Cambridge, USA), Lukas Neumann (UB), Cosima Eibensteiner (UB), Yu-Hsuan Teng (University of California San Diego, La Jolla, USA), Ashley Barnes (Europäische Südsternwarte, Garching, Deutschland [ESO]), Mélanie Chevance (Zentrum für Astronomie der Universität Heidelberg, Deutschland [ZAH] und Cosmic Origins of Life Research DAO), Dario Colombo (UB), Daniel A. Dale (University of Wyoming, Laramie, USA), Simon C.O. Glover (ZAH), Daizhong Liu (Max-Planck-Institut für extraterrestrische Physik, Garching, Deutschland) und Hsi-An Pan (Tamkang University, Taiwan).

    Medienkontakt

    Dr. Markus Nielbock
    Referent für Presse- und Öffentlichkeitsarbeit
    Max-Planck-Institut für Astronomie
    Heidelberg, Deutschland
    Tel. +49 6221 528 134
    E-Mail: pr@mpia.de
    https://www.mpia.de/oeffentlichkeit/medienkontakte


    Wissenschaftliche Ansprechpartner:

    Sophia K. Stuber
    Max-Planck-Institut für Astronomie
    Heidelberg, Deutschland
    Tel. +49 6221 528 351
    E-Mail: <stuber@mpia.de >
    https://sophiastuber.de/

    Dr. Eva Schinnerer
    Max-Planck-Institut für Astronomie
    Heidelberg, Deutschland
    Tel. +49 6221 528 293
    E-Mail: schinnerer@mpia.de
    https://www2.mpia-hd.mpg.de/homes/schinner/Eva_Schinnerer/Welcome.html


    Originalpublikation:

    Sophia K. Stuber, Jerome Pety, Eva Schinnerer, et al., “Surveying the Whirlpool at Arcseconds with NOEMA (SWAN). I. Mapping the HCN and N2H+ 3mm lines”, Astronomy & Astrophysics (2023).
    DOI: 10.1051/0004-6361/202348205
    https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202...
    https://arxiv.org/abs/2312.09810


    Weitere Informationen:

    https://www.mpia.de/aktuelles/wissenschaft/2023-17-whirlpool-galaxy-swan - Originalpressemitteilung des MPIA mit weiteren Informationen und einem Video


    Bilder

    Diese Illustration zeigt die Verteilung der Strahlung des Diazenylium–Moleküls (Falschfarben) in der Whirlpool-Galaxie im Vergleich mit einem optischen Bild.
    Diese Illustration zeigt die Verteilung der Strahlung des Diazenylium–Moleküls (Falschfarben) in der ...


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Diese Illustration zeigt die Verteilung der Strahlung des Diazenylium–Moleküls (Falschfarben) in der Whirlpool-Galaxie im Vergleich mit einem optischen Bild.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).