The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.
For around 20 years, it has been possible to modify surfaces via nanoparticles so that they concentrate or manipulate light in the desired way or trigger other reactions. Such optically active nanostructures can be found in solar cells and biological or chemical sensors, for example. In order to expand their range of applications, researchers at the Institute of Electron Microscopy and Nanoanalysis (Graz University of Technology) and the Graz Centre of Electron Microscopy (ZFE) have been working for more than one decade on manufacturing not only flat nanostructures, but in particular complex, free-standing 3D architectures. The team led by Harald Plank, Verena Reisecker and David Kuhness has achieved two breakthroughs. It is now possible to precisely simulate the required shapes and sizes of nanostructures in advance to achieve the desired optical properties, which can then be accurately produced. They have also managed to completely remove chemical impurities, incorporated during initial production without negatively impacting the 3D nanoarchitectures.
Trial-and-error procedure becomes unnecessary
Until now, three-dimensional nanostructures required a time consuming trial-and-error process until the product revealed the desired optical properties. This effort has finally been eliminated. “The consistency between simulations and real plasmonic resonances of a wide range of nanoarchitectures is very high,” explains Harald Plank. “This is a huge step forward. The hard work of the last few years has finally paid off.” The technology is currently the only one in the world that can be used to produce complex 3-dimensional structures with individual features smaller than 10 nanometres in a controlled, single step procedure on almost any surface. For comparison, the smallest viruses are around 20 nanometres in size. “The biggest challenge in recent years was to transfer the 3D architectures into high-purity materials without destroying the morphology,” explains Harald Plank. “This development leap enables new optical effects and application concepts thanks to the 3D aspect.” Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.
Precisely controlled electron beam
The researchers use focused electron beam induced deposition to produce the nanostructures. The relevant surface is exposed to special gases under vacuum conditions. A finely focused electron beam splits the gas molecules, whereupon parts of them change into a solid state and adhere to the desired location. “By precisely controlling beam movements and exposure times, we are able to produce complex nanostructures with lattice- or sheet-like building blocks in a single step”, explains Harald Plank. By stacking these nano-volumes on top of each other, three-dimensional structures can ultimately be constructed.
Harald PLANK
Assoc.Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institute of Electron Microscopy and Nanoanalysis
Phone: +43 316 873 8821
harald.plank@tugraz.at
Verena REISECKER
Dipl.-Ing. Dipl.-Ing. BSc
TU Graz | Institute of Electron Microscopy and Nanoanalysis
Phone: +43 316 873 8334
verena.reisecker@tugraz.at
Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printing.
Authors: Verena Reisecker, David Kuhness, Georg Haberfehlner, Michele Brugger-Hatzl, Robert Winkler, Anna Weitzer, David Loibner, Martina Dienstleder, Gerald Kothleitner, Harald Plank
Advanced Functional Materials, online first, 01 November 2023.
DOI: https://doi.org/10.1002/adfm.202310110
Harald Plank from the Institute of Electron Microscopy and Nanoanalysis at TU Graz has been research ...
Helmut Lunghammer
Lunghammer - TU Graz
Almost any shape can be produced using 3D nanoprinting technology. This ball consists of individual ...
CDL DEFINE/TU Graz
CDL DEFINE/TU Graz
Merkmale dieser Pressemitteilung:
Journalisten, Wirtschaftsvertreter, Wissenschaftler
Werkstoffwissenschaften
überregional
Forschungsergebnisse
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).