idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.02.2024 11:03

GPT-3 for Chemical Research

Dr. Marco Körner Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Researchers at EPFL and the University of Jena Develop Fast and User-Friendly GPT-3 Model for Chemical Tasks

    GPT-3, the language model behind the well-known AI system ChatGPT, can also be utilised in chemistry to solve various scientific tasks. This was demonstrated by a team of researchers at the École Polytechnique Fédérale de Lausanne (EPFL), Friedrich Schiller University Jena, and the Helmholtz Institute for Polymers in Energy Applications (HIPOLE) Jena. As reported in the journal “Nature Machine Intelligence”, they circumvented the issue that chemistry often lacks the large datasets required for training an AI.

    Curated Questions and Answers Instead of Large Datasets

    “One of the various examples we used are so-called photosensitive switches,” illustrates Kevin Jablonka, lead author of the study. “These are molecules that change their structure when exposed to light of a certain wavelength. This type of molecule also exists in the human body: In our retinal cells is the molecule rhodopsin, which reacts to light and thus ultimately acts as a chemical switch converting optical signals into nerve impulses,” he adds. “Therefore, the question of whether and how an as yet unknown molecule can be switched by light is indeed relevant – for instance, when it comes to developing sensors,” he summarises. “We also addressed the question of whether a molecule can be dissolved in water,” Jablonka mentions as another example, “as water solubility is an important factor for pharmaceutical agents to exert their desired effect in the body.”

    To train their GPT model to answer these and other questions, the group had to solve a fundamental problem: “GPT-3 is not familiar with most of the chemical literature,” Jablonka explains. “Thus, the answers we get from this model are usually limited to what can be found in Wikipedia.”

    Instead, Jablonka continues, the group specifically improved GPT-3 with a dataset of relatively few questions and answers. “We thus fed the model with questions – for example, about photosensitive switchable molecules, but also regarding the solubility of certain molecules in water and other chemical aspects – where we also provided the respective known answer for our ‘teaching examples’,” he elaborates. In this way, he and his team created a language model capable of providing correct insights into various chemical issues.

    Fast, Accurate, and Easy to Use

    Subsequently, the model was tested. “The scientific question about a light-switchable molecule could look like this,” Jablonka clarifies: “What is the pi–pi* transition wavelength of CN1C(/N=N/ C2=CC=CC=C2)=C(C)C=C1C?” Since the model is text-based, structural formulas cannot be specified, he explains. “But our GPT works well with the so-called SMILES codes for molecules, as in the example above,” he says. “It also recognises other notations, including chemical names that follow the so-called IUPAC nomenclature, as one might remember from chemistry class,” Jablonka continues.

    In tests, the model solved various chemical problems, often outperforming similar models that have been developed in the scientific community and trained with large datasets. “However, the crucial point is that our GPT is as easy to use as a literature search, which works for many chemical issues – such as properties like solubility, but also thermodynamic and photochemical properties like solution enthalpy or interaction with light – and, of course, chemical reactivity,” adds Prof. Dr Berend Smit from EPFL Lausanne.


    Wissenschaftliche Ansprechpartner:

    Dr Kevin Maik Jablonka
    Institute for Organic Chemistry and Macromolecular Chemistry of the Friedrich Schiller University Jena
    email: kevin.jablonka@uni-jena.de


    Originalpublikation:

    Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, Berend Smit: “Leveraging large language models for predictive chemistry”, Nature Machine Intelligence 2023, DOI: 10.1038/s42256-023-00788-1


    Bilder

    Dr Kevin Jablonka, Junior Research Group Leader at the Institute of Organic Chemistry and Macromolecular Chemistry of the Friedrich Schiller University Jena.
    Dr Kevin Jablonka, Junior Research Group Leader at the Institute of Organic Chemistry and Macromolec ...
    Photo: Jens Meyer/Uni Jena


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Dr Kevin Jablonka, Junior Research Group Leader at the Institute of Organic Chemistry and Macromolecular Chemistry of the Friedrich Schiller University Jena.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).