idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.02.2024 09:00

Mögliches Zielprotein für die Behandlung von neurodegenerativen Erkrankungen entdeckt

Barbara Simpson Kommunikation
Universität Zürich

    Forschende der Universität Zürich haben ein innovatives Zellkulturmodell für Nervenzellen entwickelt, das komplexe Mechanismen der Neurodegeneration aufschlüsselt. Damit konnten sie ein fehlreguliertes Protein als vielversprechenden therapeutischen Ansatzpunkt für die Behandlung der Amyotrophen Lateralsklerose (ALS) und der Frontotemporalen Demenz (FTD) identifizieren.

    Bei neurodegenerativen Erkrankungen stirbt ein Teil der Nervenzellen im Gehirn ab, was je nach betroffener Hirnregion zu unterschiedlichen Symptomen führt. Bei der Amyotrophen Lateralsklerose (ALS) sterben Neuronen in der motorischen Hirnrinde und im Rückenmark ab, was Lähmungen hervorruft. Bei der Frontotemporalen Demenz (FTD) sind hingegen Hirnregionen betroffen, die für Kognition, Sprache und Persönlichkeit zuständig sind.
    Sowohl ALS als auch FTD sind unaufhaltsam fortschreitende Krankheiten, für die es noch keine wirksamen Behandlungsmethoden gibt. Da die Bevölkerung immer älter wird, ist eine Zunahme von solchen altersbedingten neurodegenerativen Erkrankungen zu erwarten.
    Zwar wurde die abnorme Anhäufung eines Proteins namens TDP-43 in den Neuronen des zentralen Nervensystems als übereinstimmender Faktor bei einem überwiegenden Teil der ALS- und etwa der Hälfte der FTD-Patienten identifiziert. Doch wie die Neurodegeneration zellulär genau abläuft, ist noch weitgehend unbekannt.

    Zellkulturmodell «iNets» ideal für die Erforschung von ALS und FTD

    In ihrer Studie entwickelten Erstautor Marian Hruska-Plochan und Letztautorin Magdalini Polymenidou vom Institut für Quantitative Biomedizin der Universität Zürich ein neuartiges neuronales Zellkulturmodell, das das abweichende Verhalten von TDP-43 in Nervenzellen nachahmt. In diesem Modell entdeckten sie einen toxischen Anstieg des Proteins NPTX2, womit dieses als potenzieller therapeutischer Ansatzpunkt für ALS und FTD in Frage kommt.
    Für sein Zellkulturmodell «iNets» – so benannt als Kurzform von «interconnected neuronal networks» – verwendete Marian Hruska-Plochan menschlich induzierte pluripotente Stammzellen. Diese stammen aus Hautzellen, werden im Labor in ein sehr frühes, undifferenziertes Stadium umprogrammiert und dienen damit als Quelle für die Entwicklung vieler verschiedener, gewünschter Zelltypen. iNets ist ein Netzwerk aus solchen miteinander verbundenen Neuronen und ihren Stützzellen, die in mehreren Schichten in einer Schale wachsen.
    Die Kulturen hielten aussergewöhnlich lange – bis zu einem Jahr – und liessen sich leicht reproduzieren. «Die Robustheit der alternden iNets erlaubt es uns, Experimente durchzuführen, die sonst nicht möglich gewesen wären», sagt Hruska-Plochan. «Das Modell ist flexibel und eignet sich für eine breite Palette von experimentellen Methoden.» Die iNets-Zellkulturen boten so auch ein ideales Modell, um die Entwicklung der TDP-43-Dysfunktion bis zur Neurodegeneration zu untersuchen.

    Vom dysfunktionalen Protein zur Neurodegeneration

    Mithilfe dieses Modells konnten sie eine toxische Anhäufung des Proteins NPTX2 als Bindeglied zwischen dem Fehlverhalten von TDP-43 und dem Absterben der Nervenzellen nachweisen. Um ihre Hypothese zu überprüfen, untersuchten die Forschenden das Hirngewebe von verstorbenen ALS- und FTD-Patient:innen. Tatsächlich stellten sie fest, dass sich NPTX2 auch hier in Zellen anreichert, die eine abnorme Anhäufung von TDP-43 enthalten. Das iNets-Zellkulturmodell konnte die Pathologie von ALS- und FTD-Betroffenen also genau vorhersagen.
    In weiteren Experimenten mit dem iNets-Modell testeten die Forschenden, ob NPTX2 ein Ansatzpunkt für die Entwicklung von ALS- und FTD-Medikamenten sein könnte. Sie entwarfen eine Versuchsanordnung, in der – bei einer Anhäufung von TDP-43 in den Neuronen – die NPTX2-Konzentration gesenkt wurde. Es zeigte sich, dass damit der Degeneration in den iNets-Neuronen entgegengewirkt werden konnte. Medikamente, die die Menge des Proteins NPTX2 verringern, könnten daher eine mögliche Behandlungsstrategie sein, um die Neurodegeneration bei ALS- und FTD-Patient:innen zu stoppen.
    Für Magdalini Polymenidou ist diese Entdeckung vielversprechend: «Wir haben noch einen weiten Weg vor uns, bevor die Patient:innen davon profitieren können, aber die Entdeckung von NPTX2 gibt uns eine klare Chance, ein Therapeutikum zu entwickeln, das beim Kern der Krankheit ansetzt», sagt sie. «In Verbindung mit zwei weiteren Zielmolekülen, die kürzlich von anderen Forschungsteams identifiziert wurden, ist es denkbar, dass Anti-NPTX2-Wirkstoffe in Zukunft als eine Schlüsselkomponente in einer Kombinationstherapie für ALS und FTD fungieren könnten.»


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Magdalini Polymenidou
    Professor für Biomedizin
    Institut für Quantitative Biomedizin
    Universität Zürich
    Tel.: +41 44 635 31 06
    E-Mail: magdalini.polymenidou@uzh.ch


    Originalpublikation:

    Marian Hruska-Plochan, Vera I. Wiersma, Katharina M. Betz, et al., Magdalini Polymenidou. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature (2024). Doi: 10.1038/s41586-024-07042-7


    Weitere Informationen:

    https://news.uzh.ch/de/articles/media/2024/neurodegeneration.html Zur Medienmitteilung


    Bilder

    Digitale Zeichnung der fortschreitenden Neurodegeneration: Blau steht für gesunde Nervenzellen, während Orange und Rot das Protein NPTX2 darstellen. Gelb zeigt die toxische Anhäufung des Proteins TDP-43.
    Digitale Zeichnung der fortschreitenden Neurodegeneration: Blau steht für gesunde Nervenzellen, währ ...
    Niklas Bargenda
    Niklas Bargenda


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Digitale Zeichnung der fortschreitenden Neurodegeneration: Blau steht für gesunde Nervenzellen, während Orange und Rot das Protein NPTX2 darstellen. Gelb zeigt die toxische Anhäufung des Proteins TDP-43.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).