idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.03.2024 15:32

Mit Atomwolken Dunkle Materie detektieren

Claudia Staub Science Communication Centre - Abteilung Kommunikation
Technische Universität Darmstadt

    Die Natur eines Großteils der Materie im Universum ist Physikern weiterhin ein Rätsel. Bisherige Versuche, sie zu detektieren, scheiterten. Nun zeigen Darmstädter Physiker, wie es mit so genannten Quantensensoren doch gelingen könnte.

    Mit Sensoren, die dank der Regeln der Quantenphysik extrem empfindlich sind, wollen Physiker die wohl geheimnisvollste Substanz im Universum aufspüren: die Dunkle Materie. Sie macht etwa 80 Prozent der Materie im All aus. Die sichtbare Materie, aus der die Erde, Planeten, Sonne und Galaxien bestehen, macht also nur einen kleinen Teil des Universums aus. Physiker vermuten, dass Dunkle Materie aus einer unbekannten Art von Teilchen besteht. Die Dunkle-Materie-Teilchen wären zwar überall vorhanden, aber äußerst schwer zu detektieren, da sie nur sehr schwach mit normaler Materie, also Atomen oder Elektronen wechselwirken. In bisherigen Beobachtungen macht sie sich nur indirekt durch ihre Schwerkraft, die weitaus schwächste der vier Grundkräfte der Physik, bemerkbar.

    Bisherige Detektoren konnten noch keine Dunkle Materie direkt nachweisen. Physiker der Technischen Universität Darmstadt haben nun maßgebliche Beiträge zum Design von neuen Quantensensoren geleistet, die Dunkle Materie mit Hilfe hochpräziser Messungen detektieren sollen. „Wir stellen uns die Frage, wie man den perfekten Sensor für Dunkle Materie baut“, sagt Daniel Derr. Seine Arbeitsgruppe „Theoretische Quantenoptik“ unter der Leitung von Professor Enno Giese vom Fachbereich Physik hat zusammen mit Kollegen der Universität Ulm dazu drei Arbeiten im angesehen Journal „AVS Quantum Science“ veröffentlicht, von denen der Verlag zwei besonders hervorhob.

    Doch was ist eigentlich ein solcher Quantensensor? Eines der erstaunlichsten Phänomene der Quantenphysik ist das wellenartige Verhalten von Materie. Atome oder Elektronen stellen wir uns als winzige Teilchen vor. Aber sie können auch Wellenphänomene zeigen. Elektronen etwa, die man durch einen Spalt sendet, bilden dahinter ähnliche Streifenmuster wie es Lichtwellen tun.

    Auch größere Materieobjekte können diese „Interferenzstreifen“ bilden. Dazu gehören etwa Wolken aus Zehntausenden von Atomen, die sich zu einer Art Superatom verbinden. Da das Superatom relativ schwer ist, hat es eine sehr kurze Materiewellenlänge. Das bedeutet, dass die Interferenzstreifen solcher Superatome sehr empfindlich auf Kräfte und Beschleunigungen reagieren. Schon die relativ schwache Gravitation kann das Muster der Streifen verändern. Dieser Effekt ermöglicht hochempfindliche Gravitationssensoren, die zur Navigation oder zum Aufspüren von Bodenschätzen genutzt werden können.

    Neben der Schwerkraft könnten solche Interferometer auch eine mögliche Wechselwirkung mit Dunkler Materie nachweisen. Die Physiker diskutieren mehrere Modelle der Dunklen Materie. „Ein vielversprechender Kandidat, die so genannte ultraleichte Dunkle Materie, würde mit den Elektronen und den Quarks in den Atomkernen wechselwirken“, erklärt Derr. Damit würde diese rätselhafte Materieform die Energiestruktur des Superatoms beeinflussen und sich indirekt auf das Interferenzmuster auswirken.

    Diese Signatur der Dunklen Materie zu isolieren, ist jedoch eine große Herausforderung. Physiker wollen dazu die Interferenzstreifen zweier Superatome vergleichen. Diese müssen räumlich und zeitlich möglichst weit voneinander entfernt erzeugt und zudem mit demselben Laser manipuliert werden. „So kann man lokale Unterschiede in der Dunklen Materie sehen und das Rauschen unterdrücken“, erklärt Derr. Geplant sind Quantendetektoren mit einer Länge von etwa 100 Metern. „Perspektivisch sollen sie einmal bis zu einem Kilometer groß werden“, sagt Giese.

    „Unsere Ergebnisse haben direkten Einfluss auf das Design von Quantendetektoren für ultraleichte Dunkle Materie“, sagt Giese. So gibt es vielversprechende Ansätze, wie man den verfügbaren Platz in den Detektoren am besten ausnutzt oder wie man das Atom am geschicktesten manipuliert. Auch die Standortwahl könnten die Darmstädter Ergebnisse beeinflussen. Das Team will sich nun an internationalen Konsortien beteiligen, die solche Detektoren bauen. „In diesem Gebiet ist gerade viel Schwung“, sagt Derr. Vielleicht wird gerade der Grundstein für eine bahnbrechende Entdeckung gelegt.

    Über die TU Darmstadt
    Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland und steht für exzellente und relevante Wissenschaft. Globale Transformationen – von der Energiewende über Industrie 4.0 bis zur Künstlichen Intelligenz – gestaltet die TU Darmstadt durch herausragende Erkenntnisse und zukunftsweisende Studienangebote entscheidend mit.
    Ihre Spitzenforschung bündelt die TU Darmstadt in drei Feldern: Energy and Environment, Information and Intelligence, Matter and Materials. Ihre problemzentrierte Interdisziplinarität und der produktive Austausch mit Gesellschaft, Wirtschaft und Politik erzeugen Fortschritte für eine weltweit nachhaltige Entwicklung.
    Seit ihrer Gründung 1877 zählt die TU Darmstadt zu den am stärksten international geprägten Universitäten in Deutschland; als Europäische Technische Universität baut sie in der Allianz Unite! einen transeuropäischen Campus auf. Mit ihren Partnern der Rhein-Main-Universitäten – der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz – entwickelt sie die Metropolregion Frankfurt-Rhein-Main als global attraktiven Wissenschaftsraum weiter.
    www.tu-darmstadt.de

    MI-Nr. 10/2024, Christian J. Meier


    Wissenschaftliche Ansprechpartner:

    Professor Enno Giese

    AG Theoretische Quantenoptik
    Mail: enno.giese@physik.tu-darmstadt.de


    Originalpublikation:

    In der Sonderausgabe „Large Scale Quantum Detectors“ zu Quantensensoren des Magazins „AVS Quantum Science“ erschienen folgende drei Artikel des Darmstädter Teams:
    https://doi.org/10.1116/5.0174258
    https://doi.org/10.1116/5.0176666
    https://doi.org/10.1116/5.0175683


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).