idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.04.2024 10:37

With VECSELs towards the quantum internet

Dr. Armin Müller Marketing und Kommunikation
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

    Connecting quantum computers and increasing their performance, encrypting communication channels in a tap-proof manner or synchronizing atomic clocks: The quantum internet promises significant improvements in various key technological areas. However, in order to implement the quantum internet in the existing fiber optic network, quantum frequency converters are required that can adapt the wavelength of photons to the telecom band (1550 nm). Fraunhofer IAF has developed single-mode GaSb VECSELs with best-in-class output powers of up to 2.4 W, which enable quantum frequency conversion as a low-noise pump source.

    The expansion of fiber optics is progressing worldwide, which not only increases the bandwidth of conventional Internet connections, but also brings closer the realization of a global quantum Internet. The quantum internet can help to fully exploit the potential of certain technologies. These include much more powerful quantum computing through the linking of quantum processors and registers, more secure communication through quantum key distribution or more precise time measurements through the synchronization of atomic clocks.

    However, the differences between the glass fiber standard of 1550 nm and the system wavelengths of the various quantum bits (qubits) realized to date represent a hurdle, because those qubits are mostly in the visible or near-infrared spectral range. Researchers want to overcome this obstacle with the help of quantum frequency conversion, which can specifically change the frequencies of photons while retaining all other quantum properties. This enables conversion to the 1550 nm telecom range for low-loss, long-range transmission of quantum states.

    Project HiFi: Enabling technologies for quantum frequency conversion

    In the joint project “HiFi — Highly integrated quantum frequency converter of highest fidelity based on innovative laser, fiber and production technology” funded by the German Federal Ministry of Education and Research (BMBF), researchers are working on the realization of all necessary technologies to provide quantum frequency converters (QFK) with high efficiency and low noise for initial test tracks. The Fraunhofer Institute for Applied Solid State Physics IAF has contributed to the project with the successful development of disk lasers (also known as vertical-external-cavity surface-emitting lasers, VECSELs) based on gallium antimonide (GaSb). These are optically pumped, surface-emitting semiconductor lasers with an external resonator and intracavity filter for wavelength selection.

    2.4 W output power with absolute frequency stability below 100 kHz

    “The VECSELs we developed as part of HiFi are spectrally narrow-band pump sources which, depending on the output wavelength of the qubits used, specifically cover a wavelength between 1.9 and 2.5 µm and achieve an output power of up to 2.4 W with an absolute wavelength stability of less than 2 fm. This corresponds to a frequency stability of less than 100 kHz and clearly falls below the frequency stability class 1E-9. The result represents an international record for this type of laser,” explains Dr. Marcel Rattunde, HiFi sub-project coordinator and head of the optoelectronics department at Fraunhofer IAF.

    “The result was made possible by the close cooperation with project partner MENLO Systems GmbH. Together, we locked the disk laser to a frequency comb, which in turn was coupled to a 10 MHz reference,” emphasizes Rattunde.

    In their experiments, the researchers set the emission wavelength exactly to the target wavelength for demonstration experiments at the fiber link of Saarland University (2062.40 nm), to which Fraunhofer IAF has handed over the laser module. In addition to power scaling, the most important research tasks of Fraunhofer IAF in the HiFi project are the precise understanding of the mode behavior of the lasers and the identification and elimination of noise sources.

    Quantum frequency conversion using pump lasers

    In quantum frequency conversion, the energy of the pump photon is subtracted from the signal photon by a difference frequency process in a non-linear optical crystal. To ensure a low-noise process, the energy of the pump photons must be below the target wavelength (usually 1550 nm), otherwise the pump laser can generate photons in the output signal due to parasitic effects.

    In combination with the MENLO frequency comb, the VECSELs developed at Fraunhofer IAF meet the high requirements of quantum frequency conversion, as their narrow bandwidth and wavelength stability prevent fluctuations in the pump wavelength and consequently changes in the target wavelength of the qubits. If there is a deviation above the natural linewidth, the qubits would no longer be indistinguishable, which would eliminate a basic requirement for subsequent quantum mechanical processing.

    Fraunhofer IAF at Photonics Europe 2024

    From April 7 to 11, 2024, Fraunhofer IAF researchers will present their latest research results in the field of optoelectronics at this year’s SPIE Photonics Europe in Strasbourg.

    Steffen Adler will talk about the HiFi project results on April 11 at 2 pm in his presentation “High-power 2 μm GaSb-based VECSEL with an absolute wavelength stability below 1 MHz”.

    All presentations at a glance:

    – Marko Härtelt: “Multiplexed dual-core QCL-based sensor for real-time standoff-spectroscopy in crime scene investigations” (April 8, 4:30 p.m., Schuman, Level 1)
    – Thorsten Passow: “Optimization of AlGaAs-based Bragg-reflection waveguides for entangled photon sources” (9 April, 18:10, Galerie Schweitzer, Level 0)
    – Peter Holl: “Light Source based on Adiabatic Frequency Conversion in Whispering Gallery Resonators tailored for holographic metrology” (April 10, 10:00 a.m., Rome, Level 0)
    – Steffen Adler: “High-power 2 μm GaSb-based VECSEL with an absolute wavelength stability below 1 MHz” (April 11, 14:00, Dresde/Salon 13, Level 1)

    About Fraunhofer IAF

    The Fraunhofer Institute for Applied Solid State Physics IAF is one of the world's leading research institutions in the fields of III-V semiconductors and synthetic diamond. Based on these materials, Fraunhofer IAF develops components for future-oriented technologies, such as electronic circuits for innovative communication and mobility solutions, laser systems for real-time spectroscopy, novel hardware components for quantum computing as well as quantum sensors for industrial applications. With its research and development, the Freiburg research institute covers the entire value chain — from materials research, design and processing to modules, systems and demonstrators. https://www.iaf.fraunhofer.de/en.html


    Weitere Informationen:

    https://spie.org/conferences-and-exhibitions/photonics-europe/programme/browse-p...: Program of SPIE Photonics Europe 2024
    https://www.iaf.fraunhofer.de/en/researchers/optoelectronic-devices.html: Optoelectronics at Fraunhofer IAF
    https://www.iaf.fraunhofer.de/en/researchers/optoelectronic-devices/Hifi.html: HiFi project profile
    https://www.iaf.fraunhofer.de/en/media-library/press-releases/with-vecsels-towar...: Read press release online


    Bilder

    Disk laser setup for the development of a low-noise pump source for quantum frequency conversion
    Disk laser setup for the development of a low-noise pump source for quantum frequency conversion

    © Fraunhofer IAF

    Single-mode semiconductor disk laser module with up to 2.4 W output power for the frequency range between 1.9 and 2.5 µm, developed as a pump source for quantum frequency converters
    Single-mode semiconductor disk laser module with up to 2.4 W output power for the frequency range be ...

    © Fraunhofer IAF


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Elektrotechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Disk laser setup for the development of a low-noise pump source for quantum frequency conversion


    Zum Download

    x

    Single-mode semiconductor disk laser module with up to 2.4 W output power for the frequency range between 1.9 and 2.5 µm, developed as a pump source for quantum frequency converters


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).