idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.04.2024 12:09

Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

    „Als uns der weltbekannte „Nature“-Verlag die Möglichkeit gab, einen Nature Reviews Methods Primer mit Überblick und Anleitungen über das Gefriergussverfahren zu schreiben, waren wir begeistert“, erzählt die Materialexpertin Prof. Dr. Ulrike Wegst (Northeastern University, Boston, MA, USA und TU Berlin). „Gemeinsam mit den Tomoskopie-Experten Dr. Francisco García-Moreno und Dr. Paul Kamm (HZB und TU Berlin), hatten Dr. Kaiyang Yin (heute Humboldt Research Fellow an der Uni Freiburg), und ich gerade erste in situ Versuche durchführen und neue Phänomene zu Eiskristallwachstum und Strukturbildung entdecken können. So lag es auf der Hand, in unserem neuen Leitfaden für "Nature Reviews Methods Primers" (Impaktfaktor 39,8) experimentellen Methoden der Gefriergussverfahren mit Verfahren zu deren Analyse zu kombinieren.“

    Röntgentomoskopie: beim Gefrieren zusehen

    Nach einer Einführung in Gefriergussverfahren stellt der Leitfaden auch die Methoden vor, mit denen sich die komplexen Materialarchitekturen und -eigenschaften analysieren lassen. Besondere Möglichkeiten bietet dabei die Röntgentomoskopie, mit der sich Kristallwachstum und Strukturbildung in allen Materialsystemen (polymeren, keramischen, metallischen, sowie Verbundmaterialien) direkt während des Gefrierens in Echtzeit und in 3D beobachten lassen. „Beim Gefriergießen von wässrigen Systemen wachsen Kristalle zum Beispiel unterschiedlich schnell in verschiedene Richtungen. Da sind Tomoskopie-Verfahren besonders attraktiv, weil sie es erlauben, das anisotrope Kristallwachstum quantitativ aufzuzeichnen,“ sagt García-Moreno.

    Von Medizin bis zu Batterie-Elektroden

    Vor über 40 Jahren wurde das Gefriergussverfahren für die Herstellung von biologischen Stützstrukturen entwickelt. Bald zeigte sich, dass gefriergegossene Materialien aufgrund ihrer hochporösen Struktur sich gut in Wirtsgewebe integrieren und Heilungsprozesse unterstützen können. Inzwischen gibt es vielfältigste Anwendungen nicht nur in der Biomedizin, sondern auch im technischen Bereich, von neuartigen Katalysatoren bis zu hochporösen Elektroden für Batterien oder Brennstoffzellen. Dafür steht eine große Vielfalt an Lösungsmitteln, gelösten Stoffen und Partikeln zur Verfügung, mit denen sich die gewünschten Strukturen, Formen und Funktionalitäten gezielt erzeugen lassen.

    Wie funktioniert der Gefrierguss?

    Zunächst wird eine Substanz in einem Lösungsmittel gelöst oder aufgeschwemmt. Die Flüssigkeit wird in einer Kühlzelle vom Boden her mit einer definierten Kühlrate (gerichtetes Gefrieren) abgekühlt, so dass das Lösungsmittel gefriert. Das kristallisierte Lösungsmittel wird dann über ein Sublimationsverfahren entfernt. Übrig bleibt die vormals darin gelöste Substanz, welche nun eine komplexe, hochporöse Architektur bildet.

    Maßgeschneiderte Strukturen

    Mit Gefriergussverfahren lassen sich gezielt hierarchisch komplexe Materialarchitekturen erzeugen, die auch die mechanischen, thermischen und viele andere Eigenschaften des Materials bestimmen. Dafür können Größe und Anzahl der Poren, ihre Geometrie und Ausrichtung sowie die Partikelpackung in den Zellwänden und die Oberflächenmerkmale der Zellwände jeweils für die gewünschte Anwendung maßgeschneidert werden.

    Ausblick: Experimente unter Mikrogravitation

    Nun sind Experimente auf der Internationalen Raumstation geplant. Denn dort herrscht Mikrogravitation, also eine enorm verringerte Schwerkraft, so dass Effekte durch Sedimentation und Konvektion beim Gefrierguss deutlich geringer sind. Dadurch erwarten die Experten weitere Fortschritte beim Verständnis von Gefriergussverfahren und der Herstellung von defektfreien, für bestimmte Anwendung maßgeschneiderten Werkstoffe.


    Wissenschaftliche Ansprechpartner:

    Experten für Gefriergrussverfahren:
    Prof. Dr. Ulrike K. Wegst
    u.wegst@northeasern.edu
    Dr. Kaiyang Yin
    kaiyang.yin@imtek.uni-freiburg.de

    Experten für Tomoskopie:
    Dr. Paul Kamm
    paul.kamm@helmholtz-berlin.de

    Dr. Francisco Garcia-Moreno
    Garcia-moreno@helmholtz-berlin.de


    Originalpublikation:

    Nature Reviews Methods Primers (2024): Freeze Casting

    Ulrike G. K. Wegst, Paul H. Kamm, Kaiyang Yin, Francisco ‪García-Moreno
    DOI: 10.1038/s43586-024-00307-5


    Bilder

    Die Röntgentomographie zeigt hier in 3D die Struktur, die ein Modellsystem auf Basis einer Zuckerlösung ausgebildet hat. Die Eiskristalle erscheinen in der Abbildung blau, die Zuckerlösung ist transparent.
    Die Röntgentomographie zeigt hier in 3D die Struktur, die ein Modellsystem auf Basis einer Zuckerlös ...

    Paul Kamm /HZB

    Die Aufnahme mit einem Rasterelektronenmikroskop zeigt ein komplexes Materialsystem aus Chitosan und Nanocellulose. Das Chitosan-Gerüst wurde mit dem Gefriergussverfahren hergestellt. Der Maßstab ist 100 μm.
    Die Aufnahme mit einem Rasterelektronenmikroskop zeigt ein komplexes Materialsystem aus Chitosan und ...

    Kaiyang Yin / University of Freiburg


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Biologie, Energie, Medizin, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Wissenschaftliche Publikationen
    Deutsch


     

    Die Röntgentomographie zeigt hier in 3D die Struktur, die ein Modellsystem auf Basis einer Zuckerlösung ausgebildet hat. Die Eiskristalle erscheinen in der Abbildung blau, die Zuckerlösung ist transparent.


    Zum Download

    x

    Die Aufnahme mit einem Rasterelektronenmikroskop zeigt ein komplexes Materialsystem aus Chitosan und Nanocellulose. Das Chitosan-Gerüst wurde mit dem Gefriergussverfahren hergestellt. Der Maßstab ist 100 μm.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).