idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.09.2024 14:51

Geoinformatics: Using Artificial Intelligence to Take Better Aim Against Mosquitoes

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    The Aedes aegypti mosquito is responsible worldwide for the spread of infectious diseases such as dengue, Zika, chikungunya, and yellow fever. To combat the widely transmitted diseases affecting millions, detailed mosquito distribution maps are of major importance. Led by geoinformation scientists of Heidelberg University, an international research team has developed a new AI-supported method for mapping mosquito populations. Satellite and street view images are analyzed to more precisely assess the environmental conditions that favor the presence of Aedes aegypti.

    Press Release
    Heidelberg, 2 September 2024

    Geoinformatics: Using Artificial Intelligence to Take Better Aim Against Mosquitoes
    Satellite and street view images provide basis for more precise evaluation of the environmental conditions that favor the presence of Aedes aegypti

    The Aedes aegypti mosquito is responsible worldwide for the spread of infectious diseases such as dengue, Zika, chikungunya, and yellow fever. To combat the widely transmitted diseases affecting millions, detailed mosquito distribution maps with data on the spatial and temporal spread of populations are of major importance. Led by geoinformation scientists of Heidelberg University, an international research team has developed a new AI-supported method for mapping mosquito populations. Satellite and street view images are analyzed to more precisely assess the environmental conditions that favor the presence of Aedes aegypti. This is to improve planning of intervention measures and achieve more targeted disease control.

    Also known as the Egyptian tiger mosquito, Aedes aegypti is mostly found in tropical and subtropical regions of the world – especially in cities, where it prefers to breed in man-made water containers such as drinking water tanks, car tires, trash, or plant pots. Because the global availability and acceptance of vaccines for the diseases it transmits are still limited, except for yellow fever, controlling mosquito populations is currently the most effective intervention. Among the partly very cost-intensive measures of vector control are spraying insecticides as well as releasing mosquitoes infected with the naturally occurring bacterium Wolbachia. The bacterium can prevent virus transmission by Aedes aegypti and affect its propagation.

    Implementing these control measures requires urban mosquito distribution maps, particularly in especially affected major cities such as Rio de Janeiro (Brazil). “Precise maps are not only interesting from a financial standpoint to effectively plan mitigation measures but are also ecologically relevant, because some of these interventions, like extensive spraying of insecticides, harbor the risk of resistance development,” states Steffen Knoblauch, doctoral candidate at the Institute of Geography of Heidelberg University. Until now, mosquito distribution maps have mostly been based on manual field measurements of single mosquito traps for a monthly count of eggs and larvae. In large urban areas, however, countless traps would have to be set up and large numbers of personnel deployed to maintain a reliable overview of the spread of mosquito populations. Yet another challenge is the limited flight range of the mosquitoes, which is approximately 1,000 meters without wind assistance. This makes it difficult to derive distribution maps for major urban areas from mosquito trap measurements.

    To overcome this problem, the geoinformation scientists of Heidelberg University developed a new approach to mapping mosquito populations. “It utilizes the fact that the density of known breeding sites can be a significant predictor for the number of eggs and larvae measured in the traps, as shown by the investigations in Rio de Janeiro,” explains Prof. Dr Alexander Zipf, head of the Geoinformatics/GIScience research group at the Institute of Geography and Director of the Heidelberg Institute for Geoinformation Technology (HeiGIT). By leveraging artificial intelligence, the researchers analyze satellite and street view images to detect and map possible breeding sites in cities. In combination with field measurements, it is then possible to assess the environmental conditions that favor the presence of Aedes aegypti more precisely than before.

    Together with researchers from Brazil, Prof Zipf’s team is also working on the analysis of mobile communications data to model the movement of people in Rio de Janeiro. In combination with precise mosquito distribution maps, these data can contribute to better trace the occurrence of infectious diseases transmitted by Aedes aegypti and incorporate the acquired knowledge into intervention maps. One challenge is the modelling of human movement patterns at different times of day since the mosquito tends to be active in the early morning and evening hours.

    In addition to the Heidelberg geoinformation scientists, researchers from Austria, Brazil, Germany, Singapore, Thailand, and the USA contributed to the work. The research was funded by the German Research Foundation and the Klaus Tschira Foundation, which supports HeiGIT, an affiliated institute of Heidelberg University. The research results were published in the journal “Scientific Reports” and the “International Journal of Applied Earth Observation and Geoinformation”.

    Contact:
    Heidelberg University
    Communications and Marketing
    Press Office, phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr Alexander Zipf
    Institute of Geography
    Phone +49 6221 54-5533
    zipf@uni-heidelberg.de


    Originalpublikation:

    S. Knoblauch, M. Su Yin, K. Chatrinan, A. A. de Aragão Rocha, P. Haddawy, F. Biljecki, S. Lautenbach, B. Resch, D. Arifi, T. Jänisch, I. Morales, A. Zipf: High-resolution mapping of urban Aedes aegypti immature abundance through breeding site detection based on satellite and street view imagery. Scientific Reports (6 August 2024), https://doi.org/10.1038/s41598-024-67914-w

    S. Knoblauch, H. Li, S. Lautenbach, Y. Elshiaty, A. A. de Aragão Rocha, B. Resch, D. Arifi, T. Jänisch, I. Morales, A. Zipf: Semi-supervised water tank detection to support vector control of emerging infectious diseases transmitted by Aedes Aegypti. International Journal of Applied Earth Observation and Geoinformation (19 April 2023), https://doi.org/10.1016/j.jag.2023.103304


    Weitere Informationen:

    http://www.geog.uni-heidelberg.de/gis/index_en.html – Alexander Zipf research group
    https://heigit.org – Heidelberg Institute for Geoinformation Technology


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Geowissenschaften, Informationstechnik
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).