idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.09.2024 13:11

Scientists find new epigenetic switch

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    5-formylcytosine activates genes in the embryonic development of vertebrates

    The team of Professor Christof Niehrs at the Institute of Molecular Biology (IMB) in Mainz, Germany, has discovered that a DNA modification called 5-formylcytosine (5fC) functions as an activating epigenetic switch that kick-starts genes in early embryonic development. This finding proves for the first time that vertebrates have more than one type of epigenetic DNA mark and sheds new light on how genes are regulated in the earliest stages of development. Their findings were published in the journal Cell.

    5fC is only the second proven epigenetic DNA modification besides methylcytosine

    Our bodies are composed of trillions of cells, all working together to form a functional organism. Yet each of us started off as just a single fertilized egg cell. To become a whole human being, this single cell must multiply rapidly, forming all the correct organs in the right places. This process of development depends on thousands of genes being activated at exactly the right time and place. The activation/deactivation of genes is controlled by so-called epigenetic modifications, i.e., chemical groups attached to DNA and its associated proteins that act like traffic lights to switch genes on or off.

    For decades, scientists thought that vertebrates had only one type of epigenetic modification on DNA called cytosine methylation, which is associated with gene silencing. Ten years ago, three more chemical modifications were discovered in vertebrate DNA, but as they were only present in very small amounts scientists were uncertain if they were functional epigenetic marks.

    Now, Professor Christof Niehrs and his team have shown for the first time that one of these modifications, 5-formylcytosine, is involved in activating genes in early development. The discovery is significant because it proves that vertebrates have more than one type of epigenetic DNA mark and uncovers a new, previously unknown mechanism of epigenetic gene regulation. "These findings are a real breakthrough in epigenetics because 5fC is only the second proven epigenetic DNA modification besides methylcytosine," said Niehrs, Founding and Scientific Director of the IMB, which was opened on the campus of Johannes Gutenberg University Mainz (JGU) in 2011.

    In their study, the scientists looked at 5fC in frog embryos. Using microscopy and chromatography, they discovered that 5fC increases dramatically at the very start of development during a key step called zygotic activation when many genes become switched on. As Eleftheria Parasyraki, the first author of the study, explained: "The observation of 5fC in microscopically visible tiny dots, or chromocenters, was exciting. Based on them, we suspected that 5fC must do something important in early embryonic development."

    To prove that 5fC is an activating epigenetic mark, the scientists genetically manipulated enzymes in the embryo to increase or decrease the amount of 5fC on the DNA. Increasing 5fC resulted in increased gene expression while decreasing 5fC reduced gene expression, indicating that it was indeed the presence of 5fC on the DNA that activates genes. Finally, the scientists also observed 5fC chromocenters in mouse embryos during zygotic gene activation. This suggested that 5fC likely acts as an activating epigenetic mark in both mammals and frogs.

    The revelation that 5fC is an activating epigenetic regulator on DNA raises many questions as to how exactly it acts and what its role is beyond early zygotic genome activation. In particular, cancer cells can have very high amounts of 5fC. Additional studies on 5fC will be needed to answer these questions, which may ultimately help us to better understand how we develop and how gene regulation is disrupted in disease.

    About the Institute of Molecular Biology gGmbH

    The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011 on the campus of Johannes Gutenberg University Mainz (JGU). Research at IMB focuses on the cutting-edge fields of epigenetics, genome stability, aging, and RNA biology. The institute is a prime example of successful collaboration between a private foundation and government: the Boehringer Ingelheim Foundation has committed EUR 154 million to be disbursed from 2009 until 2027 to cover the operating costs of research at IMB. The State of Rhineland-Palatinate has provided approximately EUR 50 million for the construction of a state-of-the-art building and is giving a further EUR 52 million in core funding from 2020 until 2027. For more information about IMB, please visit www.imb.de.


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Christof Niehrs
    DNA demethylation, DNA repair & reprogramming
    Institute of Molecular Biology (IMB)
    and
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone: +49 6131 39-21400
    e-mail: c.niehrs@imb-mainz.de
    https://www.imb.de/niehrs
    https://www.imb.de/


    Originalpublikation:

    E. Parasyraki et al., 5-Formylcytosine is an activating epigenetic mark for RNA Pol III during zygotic reprogramming, Cell, 29 August 2024,
    DOI: 10.1016/j.cell.2024.08.011
    https://www.sciencedirect.com/science/article/pii/S0092867424009024?via%3Dihub


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).