The International Center for Networked, Adaptive Production (ICNAP) of the three Aachen-based Fraunhofer Institutes will be presenting an AI-supported analysis system for visual quality control at the SPS trade fair in Nuremberg from November 12 to 14, 2024. In hall 6, booth 6-357, ICNAP will be demonstrating how deep learning can be used to check weld seams on battery cell modules for defects in real time.
The use case that the researchers will be demonstrating at the SPS trade fair in Nuremberg shows the automated detection of defects in weld seams on battery cell modules. To do this, the battery cell module is manually placed under a camera and a photo is taken, which is then analyzed by a pre-trained deep learning model. During ongoing production, the artificial intelligence independently detects defects that would otherwise have to be identified by trained specialists. The new system, on the other hand, immediately displays the defect detection in color in real time – red for a defective product and green for a flawless product. This allows defects to be detected during the production process and rejects to be avoided at an early stage.
The system presented here specifically inspects battery cell modules, but it can also be applied to numerous other products that require a visual surface inspection. The process increases production efficiency through consistent and objective quality assurance and relieves skilled workers of this routine task. By automating the inspection process, companies can also counter future staff shortages.
The system's error rate continues to fall over time thanks to a growing volume of training data. Data analysis can take place either directly on site on the shop floor or using external cloud systems. During the SPS, the researchers use their new "FCTRY CLD", a local real-time capable cloud from the Fraunhofer IPT. This enables the operation of time-critical applications for production, such as the control of machines or the processing of sensor data. The advantage: the data is processed securely in the production environment and does not leave the company, as is the case with public cloud providers.
ICNAP: A strong network for the digital future
The International Center for Networked Adaptive Production, ICNAP, is a collaboration between the three Aachen-based Fraunhofer Institutes for Production Technology IPT, for Laser Technology ILT and for Molecular Biology and Applied Ecology IME and 24 renowned companies worldwide. ICNAP was founded as an open research community that develops and tests new approaches to digitalization in production as an industrial test environment.
Visitors are cordially invited to visit the ICNAP booth at SPS 2024 in hall 6, booth 6-357 to discover the potential of deep learning and the advantages of the new "FCTRY CLD" for their production in person.
Dr.-Ing. Mario Pothen
Contact person for Digitalization & Networking
Fraunhofer Institute for Production Technology IPT
Steinbachstrasse 17
Phone +49 241 8904-144
mario.pothen@ipt.fraunhofer.de
www.ipt.fraunhofer.de/en.html
https://www.ipt.fraunhofer.de/en/Press/Pressreleases/241016-deep-learning-for-re...
Automatic defect detection on the weld seams of battery cell modules.
© Fraunhofer IPT
The system developed by ICNAP uses deep learning to detect surface defects in real-time.
© Fraunhofer IPT
Merkmale dieser Pressemitteilung:
Journalisten
Elektrotechnik, Informationstechnik, Maschinenbau, Werkstoffwissenschaften, Wirtschaft
überregional
Forschungs- / Wissenstransfer
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).