07.01.2025/Kiel/St Andrews. An international research team reconstructed how atmospheric carbon dioxide (CO2) behaved between 335 and 265 million years ago. This period encapsulates the peak of the Late Palaeozoic Ice Age, when Earth's climate cooled dramatically. The new findings provide decisive evidence that CO2 has been regulating Earth's climate and environmental conditions for hundreds of millions of years. Published in the journal Nature Geoscience, the research was led by Dr. Hana Jurikova from the University of St Andrews, with contributions from the GEOMAR Helmholtz Centre for Ocean Research Kiel and other leading institutions.
CO₂ is the Earth's most important greenhouse gas: it absorbs heat, radiates a large amount of it back to Earth and thus influences the global climate. While its role in recent climate change is well established, reconstructing CO₂ levels from Earth's deeper geological past has long been a challenge, leaving gaps in understanding how climate transitions between cooler and warmer states.
An international research team led by Dr Hana Jurikova from the University of St Andrews and nine other organisations, including the GEOMAR Helmholtz Centre for Ocean Research Kiel, has now reconstructed the atmospheric CO₂ content during the Carboniferous and Permian periods between 335 and 265 million years ago. Using geochemical signatures from ancient fossils, the researchers present a 80-million-year record of atmospheric CO₂ levels as Earth transitioned into and out of its penultimate ice age. The results have now been published in the scientific journal Nature Geoscience.
Past atmospheric CO₂ levels unlocked through geochemical signatures
The research team analyzed isotopic signatures in fossilized brachiopod shells, clam-like organisms that serve as natural archives of ancient ocean conditions. ‘The chemical composition of these shells reflects the state of the oceans at the time of their formation,’ explains Dr Jurikova, Senior Researcher at the University of St Andrews and leader of the study. ‘By analyzing boron isotopes, we can estimate atmospheric CO₂ levels. Strontium isotopes reveal the fossils' age, while carbon and oxygen isotopes provide insights into CO₂ source and climate. Together, these techniques allow us to accurately reconstruct Earth's ancient CO₂ levels and understand the factors driving their changes,’ says Hana Jurikova. She previously completed her PhD at GEOMAR, where she also carried out the first geochemical measurements for the study.
CO₂ plays a central role in climate transitions
Using this methodology, the researchers found that during the Carboniferous period, atmospheric CO₂ levels fell to critically low levels, causing an extensive ice age that lasted tens of millions of years. Then, around 294 million years ago, during the Early Permian, volcanic activity caused CO₂ levels to rise, causing the Earth to warm and the ice sheets to melt. ‘The beginning and the end of the Late Palaeozoic Ice Age was one of the most important climate transitions in Earth's history, shaping the evolution of modern environments and life on our planet. We now have evidence that atmospheric CO₂ was an important driver of this change,’ says Prof Dr Anton Eisenhauer, co-author and Professor of Marine Environmental Geochemistry at GEOMAR. ‘Although the time scales of geological climate transitions differ significantly from today's anthropogenic climate changes, the principle remains the same - rising CO₂ levels drive warming and sea level rise,’ adds Dr Marcus Gutjahr, Marine Biogeochemist at GEOMAR and co-author of the study.
Reconstructing atmospheric CO₂ concentrations from hundreds of millions of years ago remains a challenge, as there are few well-preserved geological archives. The new results make an important contribution to understanding the long-term evolution of atmospheric CO₂ in geological history. However, further work is needed and gaps remain to be closed before the record of Earth’s CO₂ history can be considered complete.
Jurikova, H., Garbelli, C., Whiteford, R., Reeves, T., Laker, G. M., Liebetrau, V., Gutjahr, M., Eisenhauer, A., Savickaite, K., Leng, M. J., Iurino, D.A., Viaretti, M., Tomašových, A., Zhang, Y., Wang, Shi, G. R., Shen, S., Rae, J. W. B., Angiolini, L. (2025). Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age. Nature Geoscience.
DOI: 10.1038/s41561-024-01610-2
https://www.nature.com/articles/s41561-024-01610-2
http://www.geomar.de/n9712 Image material available for download
https://www.st-andrews.ac.uk/research/ Research at the University of St Andrews
https://www.geomar.de/en/research/core-themes/ocean-and-climate Ocean and Climate at GEOMAR
Merkmale dieser Pressemitteilung:
Journalisten
Geowissenschaften, Geschichte / Archäologie, Meer / Klima, Umwelt / Ökologie
überregional
Forschungsergebnisse
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).