Collaboration at Mainz University enables the simulation of skyrmion dynamics on experimentally relevant time scales
Skyrmions are nanometer- to micrometer-sized magnetic whirls that exhibit particle-like properties and can be moved efficiently by electrical currents. These properties make skyrmions an excellent system for new types of data storage or computers. However, for the optimization of such devices, it is usually too computationally expensive to simulate the complicated internal structure of the skyrmions. One possible approach is the efficient simulation of these magnetic spin structures as particles, similar to the simulation of molecules in biophysics. Until now, however, there has been no conversion between simulation time and experimental real time.
Collaboration of theory and experiment
To meet this challenge, the theoretical physics group of Professor Peter Virnau and the experimental physics group of Professor Mathias Kläui at Johannes Gutenberg University Mainz (JGU) have joined forces. The method for determining the time conversion combines experimental measurement techniques with analysis methods from statistical physics. "We can now not only quantitatively predict the dynamics of skyrmions, but the simulations are also similar in speed to the experiments," explained theoretical physicist Maarten A. Brems, who developed the method. "The predictive power of the new simulations will significantly accelerate the development of skyrmion-based applications," emphasized Professor Mathias Kläui, "especially with regard to novel, alternative energy-saving computer architectures, which are the focus of JGU's Top-level Research Area 'TopDyn – Dynamics and Topology', amongst others."
The results have been published in "Physical Review Letters" and highlighted as an Editors' Suggestion.
Image:
https://download.uni-mainz.de/presse/08_physik_komet_skyrmion_dynamik.jpg
Magneto-optical microscope image of a skyrmion, which is the dark spot marked by a blue circle, in a ring of magnetic material. The spatially resolved pinning potential, which determines the special occurrence probability of the skyrmion, is shown. This is inhomogeneous due to material defects. The results from simulation and experiment as well as a high-resolution interpolation of the experimental results are shown around the microscopy image.
ill./©: Maarten A. Brems & Tobias Sparmann
Related links:
• https://www.klaeui-lab.physik.uni-mainz.de – Kläui Lab at the JGU Institute of Physics
• https://www.komet1.physik.uni-mainz.de/ – Statistical Physics and Soft Matter Theory group at the JGU Institute of Physics
• https://topdyn.uni-mainz.de/ – Top-level Research Area "TopDyn – Dynamics and Topology" at JGU
Read more:
• https://press.uni-mainz.de/energy-saving-computing-with-magnetic-whirls/ – press release "Energy-saving computing with magnetic whirls" (16 Sept. 2024)
• https://press.uni-mainz.de/magnetic-whirls-pave-the-way-for-energy-efficient-com... – press release "Magnetic whirls pave the way for energy-efficient computing" (11 Sept. 2023)
• https://press.uni-mainz.de/energy-efficient-computing-with-tiny-magnetic-vortice... – press release "Energy-efficient computing with tiny magnetic vortices" (6 Dec. 2022)
• https://press.uni-mainz.de/obstacle-course-for-microscopic-whirlwinds/ – press release "Obstacle course for microscopic whirlwinds" (4 July 2022)
• https://press.uni-mainz.de/magnetic-whirls-in-confined-spaces/ – press release "Magnetic whirls in confined spaces" (4 March 2021)
• https://press.uni-mainz.de/magnetic-whirls-crystallize-in-two-dimensions/ – press release "Magnetic whirls crystallize in two dimensions" (9 Sept. 2020)
• https://press.uni-mainz.de/skyrmions-like-it-hot-spin-structures-are-controllabl... – press release "Skyrmions like it hot: Spin structures are controllable even at high temperatures" (13 Feb. 2020)
• https://press.uni-mainz.de/the-power-of-randomization-magnetic-skyrmions-for-nov... – press release "The power of randomization: Magnetic skyrmions for novel computer technology" (7 May 2019)
• https://press.uni-mainz.de/international-research-team-achieves-controlled-movem... – press release "International research team achieves controlled movement of skyrmion" (7 March 2016)
Professor Dr. Peter Virnau
Statistical Physics and Soft Matter Theory
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone: +49 6131 39-20493
e-mail: virnau@uni-mainz.de
https://www.komet1.physik.uni-mainz.de/people/peter-virnau/
Professor Dr. Mathias Kläui
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone: +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/
M. A. Brems et al., Realizing Quantitative Quasiparticle Modeling of Skyrmion Dynamics in Arbitrary Potentials, Physical Review Letters 134: 046701, 28 January 2025,
DOI: 10.1103/PhysRevLett.134.046701
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.046701
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Elektrotechnik, Informationstechnik, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).