idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.03.2025 10:12

Illuminating brain circuits in the axolotl

Manel Llado IMBA Communications
IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

    The axolotl is a powerful model for understanding regeneration, however, studying the axolotl’s nervous system has been challenging as tools for visualizing and manipulating neuronal circuits have been lacking. In a study published in PNAS, Katharina Lust and Elly Tanaka at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences now present a method for introducing genes into axolotl neurons, allowing scientists to interrogate neuronal organization in the axolotl.

    The axolotl’s (Ambystoma mexicanum) extraordinary regenerative abilities—the salamander can regrow lost limbs and repair complex organs, including the retina and the brain – make the axolotl an ideal model for studying both how neural circuits form and how they regenerate after injury. So far, brain regeneration in the axolotl has been studied with classical methods, such as by employing tracers and antibodies. However, researchers have lacked the tools for capturing the dynamics of circuit regeneration, interrogating functional recovery and manipulating neuronal function in the axolotl brain.

    Now, Katharina Lust and Elly Tanaka at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences present an efficient method for delivering genes into axolotl neurons using viruses, enabling researchers to dynamically visualize neurons and transfer novel genes into neurons. Their findings were published in PNAS on March 5th.

    Lighting up axolotl neurons

    Genes can be introduced into cells using different methodologies, such as by hijacking harmless viruses to deliver genes. So far, virus-mediated gene delivery into axolotl neurons had not been achieved. In the newly published study, Lust and Tanaka demonstrated for the first time that adeno-associated viral vectors (AAVs) can efficiently deliver transgenes into axolotl neurons. By testing different AAV serotypes—variants that target different cell types— the scientists identified the most effective serotype for delivering transgenes into axolotl neurons.

    Using this gene delivery method, the scientists introduced the marker GFP into the neurons of a live axolotl. In this way, the scientists were able to fluorescently label different neuronal types and to visualize the projections connecting neurons.

    From eye to brain—and back

    Visualizing neural connections allows scientists to map the circuits linking different brain areas. Using viral gene delivery in the axolotl’s retina, the scientists mapped the connections that allow retinal neurons to transmit visual information to different brain regions. The scientists also identified neuronal projections traveling in the opposite direction—from the brain to the retina—suggesting that the brain influences and fine-tunes retinal function.

    “This technology provides a window into visualizing neuronal activity in vivo in the brain and tracing how brain circuits regenerate after injury,” explains first author Katharina Lust, postdoctoral researcher in the lab of Elly Tanaka.


    Expanding the limits of axolotl brain research

    In addition to opening up new ways for dynamically visualizing neurons in the axolotl brain, this study also establishes viral vectors as powerful tools for introducing new genes into axolotl neurons and interrogating neuronal organization.

    “Viral vectors could be used to manipulate neural circuits or to probe the roles of specific genes in axolotl brain repair,” says corresponding author Elly Tanaka, Scientific Director of IMBA. “This tool will unlock experimental opportunities previously unattainable in the axolotl. This work establishes the axolotl as a key vertebrate representative in the world of molecular neuroscience, helping us understand the essential features of the vertebrate brain.”


    Wissenschaftliche Ansprechpartner:

    Sylvia Weinzettl

    IMBA – Institute of Molecular Biotechnology GmbH

    Dr. Bohr-Gasse 3, 1030 Vienna

    T: +43 1 79044 – 4403

    Mail: sylvia.weinzettl@imba.oeaw.ac.at

    www.imba.oeaw.ac.at


    Originalpublikation:

    Adeno-associated viruses for efficient gene expression in the axolotl nervous system. Katharina Lust & Elly Tanaka. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2421373122


    Weitere Informationen:

    https://www.oeaw.ac.at/imba/research-highlights/news/illuminating-brain-circuits...


    Bilder

    Using viral gene delivery allows fluorescent labeling of neuronal connections in the axolotl brain
    Using viral gene delivery allows fluorescent labeling of neuronal connections in the axolotl brain
    Katharina Lust/IMBA
    Katharina Lust/IMBA


    Anhang
    attachment icon Axolotl picture

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Using viral gene delivery allows fluorescent labeling of neuronal connections in the axolotl brain


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).