idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.03.2025 11:25

Neutron imaging reveals optimization potential for CO₂ conversion

Katrin Grötzinger Öffentlichkeitsarbeit
Hahn-Schickard

    Scientific findings from Hahn-Schickard and the University of Freiburg were featured as a ‘research highlight’ in Nature Catalysis.

    The environmentally harmful greenhouse gas carbon dioxide, or CO₂ for short, can be converted into valuable chemical products such as carbon monoxide (CO) or ethanol by means of electrochemical reduction – electrolysis. These can be used as raw materials for industry or for the sustainable provision of energy. However, a key obstacle to the long-term stability of this technology is the water and salt management within the electrolytic cell in which the chemical reaction takes place.

    The research team led by Dr. Joey Disch and PD Dr. Severin Vierrath from Hahn-Schickard and the University of Freiburg, in collaboration with the French Institut Laue-Langevin in Grenoble, has made significant progress in understanding the distribution of water during CO₂ electrolysis. Their study was first published in the ACS Energy Letters and has now been featured in the February issue of Nature Catalysis. The study uses high-resolution neutron imaging – one of the most powerful methods for directly investigating water transport in electrolyzers – to visualize the transport mechanisms during the pulsed operation of a CO₂ electrolyzer. With a spatial resolution of 6 μm, this method allows a highly precise investigation of water distribution and salt formation under realistic operating conditions (400 mA cm⁻² at a cell voltage of 3.1 V and a Faradaic efficiency for CO of 95%). In contrast to X-rays, neutrons easily penetrate even metallic components, while making hydrogen and thus water-containing structures highly visible.

    The results show a significant stabilization of the electrolyzer during pulsed operation, in which the cell potential is periodically set to a potential below the onset of reduction for a short time. Neutron imaging provides an explanation for the stabilization and illustrates that during the brief interruptions in operation, the water content in the gas diffusion layer increases, which promotes the breakdown of obstructive salt deposits.

    Electrochemical CO₂ reduction opens up promising prospects for a sustainable transformation of the chemical industry. In particular, CO₂ electrolysis for the production of carbon monoxide is on the threshold of industrial application: electrolysis cells with anion exchange membranes are already impressing with remarkable efficiency thanks to optimized reactant management and minimized resistance losses. These findings thus provide valuable information for optimizing the design and operation of CO₂ electrolyzers, enhancing their efficiency and long-term stability, and facilitating the removal of the harmful greenhouse gas CO₂ from the environment.

    Funding source and acknowledgements:
    This work was funded by the Vector Foundation (CO2-to-X) and partly based on previous work funded by the German Federal Ministry of Education and Research (ErUM Pro 05K19VFA, NeutroSense). The authors would like to thank the Institut Laue-Langevin (ILL) for conducting the neutron radiography experiment.


    Wissenschaftliche Ansprechpartner:

    Dr. Joey Disch, Head of the AEM Electrolysis group
    Tel: +49 761 216361720 | e-mail: Joey.Disch@Hahn-Schickard.de


    Originalpublikation:

    “Pulsed electrolysis through neutron lenses” in Nature Catalysis: https://www.nature.com/articles/s41929-025-01305-w
    "High-Resolution Neutron Imaging of Water Transport in CO₂ Electrolysis during Pulsed Operation" in the ACS Energy Letters: https://pubs.acs.org/doi/10.1021/acsenergylett.4c03003


    Weitere Informationen:

    https://www.ees-lab.org/


    Bilder

    Joey Disch heads the “AEM Electrolysis” group in the “Electrochemical Energy Systems” division at Hahn-Schickard and the Department of Microsystems Engineering at the University of Freiburg.
    Joey Disch heads the “AEM Electrolysis” group in the “Electrochemical Energy Systems” division at Ha ...
    Florian Forsbach
    Hahn-Schickard


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Energie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Joey Disch heads the “AEM Electrolysis” group in the “Electrochemical Energy Systems” division at Hahn-Schickard and the Department of Microsystems Engineering at the University of Freiburg.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).