Researchers from the Chair of Biomaterials at the University of Bayreuth have discovered the mechanism by which collagen, the most common protein in the human body, successfully assembles itself. They identified electrostatic forces that support this self-organisation and contribute to the stability of the protein. Their findings have been published in Nature Communications.
---
What for?
Collagens are the most prevalent proteins in the human body, found in skin, bones, teeth, and the cornea. Malformations of collagen are among the primary causes of genetic disorders, such as brittle bone disease, where some affected individuals experience fractures with minimal force, while others display few or no symptoms. Deciphering the mechanisms of collagen self-organisation may therefore aid in understanding the development of these conditions and the varying severity of symptoms.
---
At the molecular level, collagens consist of a rope-like structure of three interwoven strands known as a triple helix. Collagen self-organisation begins at one end of this structure and progresses like a zipper to the other end. However, individual strands are often long and flexible, which can disrupt the progression. Researchers from the “Collagen – Structure, Function and Biomaterials” working group, led by Dr. Abhishek Jalan at the Chair of Biomaterials at the University of Bayreuth, have now identified electrostatic molecular forces that stabilise the already self-organised sections of the triple helix. This enables the self-organisation of the remaining strand segments to proceed successfully.
The researchers found that certain amino acids within collagen form salt bridges, which enhance the stability of the protein. Their study shows that the 28 known types of collagen each contain an average of 50 such bridges. In contrast, malformed collagen has a drastically reduced number of salt bridges. “The bridges between the amino acids function as electrostatic clamps that fix the already intertwined strands of the triple helix, allowing the remaining regions of the strands to organise themselves. These bridges also prevent local unwinding of already organised collagen strands,” says Jalan.
However, the salt bridges within the protein do more than just enhance stability: the researchers in Bayreuth discovered that mutations disrupting these bridges are associated with more severe or even life-threatening diseases. “For example, brittle bone disease has a wide spectrum of severity. Some forms show no clinical symptoms, while others are fatal. The effect of mutations on the salt bridges provides, for the first time, a clue as to why this spectrum exists and why some mutations in collagen lead to more severe outcomes than others,” explains Jalan.
The study is the result of years of collaboration between the University of Bayreuth, the University of Cambridge, and the Centre national de la recherche scientifique (CNRS) in Lyon, which began in 2016 with Dr. Jalan’s research stay in Cambridge.
Dr. Abhishek Jalan
Group Leader „Collagen – Structure, Function und Biomaterials“
Chair for Biomaterials
University of Bayreuth
Phone: +49 (0)921 / 55-6728
Mail: abhishek-anan.jalan@uni-bayreuth.de
Deciphering the folding code of collagens. Jean-Daniel Malcor, Noelia Ferruz, Sergio Romero-Romero, Surbhi Dhingra, Vamika Sagar & Abhishek A. Jalan. Nature Communications (2025)
DOI: https://doi.org/10.1038/s41467-024-54046-y
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Medizin
überregional
Forschungsergebnisse
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).