Together with an international team of researchers from the Universities of Southern California, Central Florida, Pennsylvania State and Saint Louis, physicists from the University of Rostock have developed a novel mechanism to safeguard a key resource in quantum photonics: optical entanglement. Their discovery has been published online by the renowned journal “Science” on March 28, 2025.
Declared as International Year of Quantum Science and Technology by the United Nations, 2025 marks 100 years since the initial development of quantum mechanics. As this strange and beautiful description of nature on the smallest scales continues to fascinate and puzzle physicists, its quite tangible implications form the basis of modern technology as well as material science, and are currently in the process of revolutionizing information science and communications. A key resource to quantum computation is so-called entanglement, which underpins the protocols and algorithms that make quantum computers exponentially more powerful than their classical predecessors. Moreover, entanglement allows for the secure distribution of encryption keys, and entangled photons provide increased sensitivity and noise resilience that dramatically exceed the classical limit.
Yet, entanglement is a delicate property and can easily be lost due to decoherence arising from perturbations such as thermal noise, and reliably preserving the entangled portion of an arbitrary input state is one of the central challenges in quantum technologies. The team approached this formidable task by harnessing the complex light dynamics in photonic circuits. Placed in close proximity to one another, such “photonic wires” do not only guide light along pre-defined paths, but also allow photons to “jump” between neighboring lanes. By fine-tuning this coupling to conform to so-called anti-parity-time symmetry, the researchers managed to selectively remove the non-entangled components of arbitrary input states. Implemented on a lossless photonic network, their newly-devised entanglement filter achieves near-unity fidelity under single- and two-photon excitation and is scalable to higher photon levels, remaining robust against decoherence during propagation.
These findings open up a promising path in quantum photonics, eliminating the need for absorbing or amplifying materials. Ultimately, by enabling the on-demand generation of entangled photons and the non-destructive purification of entanglement on a compact optical chip, this work sets the stage for advanced quantum technologies to be developed on integrated platforms.
This research was funded by Deutsche Forschungsgemeinschaft and the Alfried Krupp von Bohlen und Halbach-Foundation.
Prof. Alexander Szameit
Experimental Solid-State Optics Group
Institute of Physics, University of Rostock, Germany
Tel.: +49 381 498-6790
E-Mail: alexander.szameit@uni-rostock.de
M. A. Selim, M. Ehrhardt et al., “Selective filtering of photonic quantum entanglement via anti-parity-time symmetry,” Science, https://doi.org/10.1126/science.adu3777 (2025).
A judiciously designed arrangement of coupled waveguides allows for partially entangled states of li ...
M. A. Selim
University of Southern California
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
Physik / Astronomie
überregional
Forschungsergebnisse, Forschungsprojekte
Englisch
A judiciously designed arrangement of coupled waveguides allows for partially entangled states of li ...
M. A. Selim
University of Southern California
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).