idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.04.2025 08:51

Physicists at TU Dortmund University Investigate Dynamic Phenomena of a Time Crystal

Lena Reil Referat Hochschulkommunikation
Technische Universität Dortmund

    Physicists at TU Dortmund University have periodically driven a time crystal and discovered a remarkable variety of nonlinear dynamic phenomena, ranging from perfect synchronization to chaotic behavior within a single semiconductor structure. The team has now published its latest findings in the renowned journal Nature Communications.

    For their current research, Dr. Alex Greilich's team from the Department of Physics utilized a highly robust time crystal, previously introduced in Nature Physics last year. The crystal, made of indium gallium arsenide, was continuously illuminated with a laser during the initial experiment. This interaction caused a nuclear spin polarization, which in turn spontaneously generated oscillations, embodying the essence of a time crystal through periodic behavior under constant excitation.

    In the newly published follow-up study, the team explored the dynamic phases of the time crystal. They illuminated the semiconductor periodically instead of continuously, while also varying the frequency of the periodic drive. The observed behavior of the time crystal, its frequency response, ranged from perfect synchronization to chaotic dynamics. A diagram reveals these dynamic phenomena clearly: the visible plateaus indicate that the system's frequency response is strictly bound to the drive frequency. However, synchronization occurs only at specific fractions of the system's natural frequency. These fractions, in order of appearance with increasing drive frequency, correspond to the "Farey tree sequence," a well-known hierarchical structure implemented in a crystal for the first time.

    If the driving frequency is varied further, the end of the synchronization range is reached. Here, each frequency component splits into at least two branches that are symmetrical to the synchronization frequency. These frequency branches connect the synchronization plateaus and together form a kind of staircase, known in the literature as “the devil’s staircase,” indicating a path either upwards or downwards. Both the step height and width decrease with each step. This branching leads to multiple staircases of varying steepness, which eventually converge, resulting in chaotic motion. Chaos here does not mean that the motion becomes entirely unpredictable but rather that the slightest changes can lead to completely different forms of motion. If the driving frequency is altered even further, a threshold is crossed beyond which the chaos collapses, and the motion becomes regular and periodic again.

    “For the first time, all these observations have been made in a semiconductor. They represent a significant step toward a comprehensive understanding of nonlinear systems,” says Dr. Alex Greilich. In the future, his team will continue researching how complex dynamic states in nonlinear systems arise and evolve under external periodic driving. These fundamental research findings could help tailor the properties of semiconductors, which are essential for modern electronics. Nonlinear systems are also ubiquitous in biology, for instance, in phenomena such as heartbeats, the organized flight of birds or the chirping of crickets.


    Wissenschaftliche Ansprechpartner:

    Dr. Alex Greilich
    Department of Physics
    E-Mail: alex.greilich@tu-dortmund.de
    Phone: +49 231 755 8525


    Originalpublikation:

    https://doi.org/10.1038/s41467-025-58400-6


    Weitere Informationen:

    https://www.nature.com/articles/s41567-023-02351-6


    Bilder

    The diagram shows the hierarchical Farey tree sequence (Farey tree: 1/2, 3/5, 2/3...) as well as the staircase structure (devil’s staircase). f₀ is the natural system frequency, fₘ is the modulation frequency, and fₑₓₚ are the observed frequencies.
    The diagram shows the hierarchical Farey tree sequence (Farey tree: 1/2, 3/5, 2/3...) as well as the ...

    Alex Greilich

    Dr. Alex Greilich
    Dr. Alex Greilich

    TU Dortmund


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    The diagram shows the hierarchical Farey tree sequence (Farey tree: 1/2, 3/5, 2/3...) as well as the staircase structure (devil’s staircase). f₀ is the natural system frequency, fₘ is the modulation frequency, and fₑₓₚ are the observed frequencies.


    Zum Download

    x

    Dr. Alex Greilich


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).