Asymmetric interactions between molecules may serve as a stabilizing factor for biological systems. A new model from researchers of the department Living Matter Physics at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) reveals this regulatory role of non-reciprocity. The scientists aim to understand the physical principles based on which particles and molecules are able to form living beings and, eventually, organisms.
Most organizations, may it be a company, a society or a nation, function best when each member carries out their assigned role. Moreover, this efficiency often relies on spatial organization, which arose due to rules or emerged naturally via learning and self-organization. At the microscopic level, cells operate in a similar way, with different components handling specific tasks. The scientists from MPI-DS aimed to understand how complex biological structures are created in the first place. In their models, they investigate the basic ingredients which are required for the formation of ordered structures and which are only based on simple interactions between different components.
“In a passive system, random interactions between particles are balanced and lead to the formation of stable patterns”, explains Laya Parkavousi, first author of the study. “However, if we add non-reciprocal interactions to the system, meaning that one particle is attracted by another, which in turn is repelled, we observe activity that can homogenize the mixture,” she continues. In other words, non-reciprocal interactions, which were investigated also in previous studies, allow to control the state of the particle organization.
“By tuning the non-reciprocity, we enable the system to adapt different states,” says Navdeep Rana, shared first author of the study. “These states can be so-called molecular condensates within a cell which are not separated by a membrane or also waves of travelling information that is used in cellular signaling pathways,” he explains. The study thus offers a new route to understanding how complex patterns and structures emerge and how cellular functions can be maintained.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.148301
https://www.ds.mpg.de/4080176/250422_Saha_non-reciprocal?c=148862
Non-reciprocal interaction networks can induce stability in a biological system and allow it to adop ...
© MPI-DS
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Physik / Astronomie
überregional
Forschungsergebnisse
Englisch
Non-reciprocal interaction networks can induce stability in a biological system and allow it to adop ...
© MPI-DS
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).