idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.06.2025 11:21

Wie das Gehirn den Verlust von Nervenzellen kompensiert

Veronika Wagner M.A. Unternehmenskommunikation
Universitätsmedizin der Johannes Gutenberg-Universität Mainz

    Wissenschaftler des Instituts für Physiologie der Universitätsmedizin Mainz haben entschlüsselt, wie das Gehirn in der Lage ist, seine Funktion bei einem Verlust von Nervenzellen weitestgehend aufrechtzuerhalten. Bei Untersuchungen im Tiermodell fand das Forschungsteam heraus, dass sich neuronale Netzwerke in der Großhirnrinde innerhalb eines kurzen Zeitraums reorganisieren, indem andere Nervenzellen die Aufgaben der verlorenen Neuronen übernehmen. Diese neuen Erkenntnisse könnten die Grundlage für zukünftige Forschung zu natürlichen Alterungsprozessen und neurodegenerativen Erkrankungen wie Alzheimer oder Parkinson bilden. Die Studie wurde jetzt in Nature Neuroscience veröffentlicht.

    Nervenzellen, auch Neuronen genannt, sind die wichtigsten Bausteine des Gehirns. Sie stellen die Basis für alle geistigen und körperlichen Funktionen wie Denken, Fühlen, Bewegung und Wahrnehmung dar. Im Laufe des Lebens können Nervenzellen im Gehirn aus verschiedenen Gründen verloren gehen. Einerseits können Nervenzellen durch altersbedingte Prozesse absterben. Zum anderen führen sogenannte neurodegenerative Erkrankungen wie Alzheimer oder Parkinson zu einem schneller fortschreitenden Verlust von Neuronen.

    Während die meisten Körperorgane alte oder beschädigte Zellen regelmäßig durch neue ersetzen, um ihre Organfunktion aufrechtzuerhalten, können sich im Gehirn neue Neuronen nur in bestimmten Regionen bilden. Im Kortex, der auch als Großhirnrinde bezeichneten Hirnregion, die für komplexe Denkprozesse und die Wahrnehmung verantwortlich ist, ist die Fähigkeit zur Neubildung von Nervenzellen im Erwachsenenalter sehr eingeschränkt. „Dennoch zeigt sich die kortikale Gehirnfunktion in klinischen Untersuchungen oft überraschend widerstandsfähig gegenüber einem Neuronenverlust, der im Verlauf des Alterns oder bei neurodegenerativen Erkrankungen entsteht“, erläutert Prof. Dr. Simon Rumpel, Leiter der AG Systemische Neurophysiologie am Institut für Physiologie der Universitätsmedizin Mainz.

    Bisher war nicht bekannt, wie das Gehirn in der Lage ist, den Verlust von Nervenzellen zu kompensieren und seine Funktion weitestgehend aufrechtzuerhalten. Um das herauszufinden, hat das Forschungsteam um Professor Rumpel im Tiermodell die neuronalen Netzwerke im Auditorischen Kortex, der für die Verarbeitung von akustischen Reizen verantwortlich ist, untersucht. Grundlage für die bewusste Wahrnehmung von Geräuschen sind Aktivitätsmuster, die im Gehirn durch Schall hervorgerufen werden. Diese neuronalen Muster werden auch als Repräsentationskarte bezeichnet.

    Die Forscher fanden heraus, dass sich die auditive Repräsentationskarte bei einem experimentell gezielt hervorgerufenen Verlust von nur wenigen spezifischen Nervenzellen zunächst destabilisierte. Dies deutet darauf hin, dass sich das für die Geräuschwahrnehmung zuständige neuronale Netzwerk prinzipiell in einer empfindlichen Balance befindet. Die Wissenschaftler beobachteten jedoch, dass sich bereits nach wenigen Tagen sehr ähnliche Aktivitätsmuster neu bildeten. Wie das Forschungsteam zeigen konnte, war dies darauf zurückzuführen, dass Nervenzellen, die zuvor nicht durch Schall aktiviert wurden, nun die Fähigkeit hatten, an die Stelle der verlorenen Neuronen zu treten.

    „Mit unseren Untersuchungen haben wir aufgedeckt, dass neuronale Netzwerke im Gehirn über ein bemerkenswertes Potential zur Reorganisation verfügen. Wir nehmen an, dass dieser neu entdeckte neuronale Mechanismus auch eine wichtige Rolle für den Verlust von Nervenzellen bei natürlichen Alterungsprozessen sowie bei neurodegenerativen Erkrankungen spielen könnte. Auf Grundlage unserer Erkenntnisse können zukünftige Forschungsanstrengungen darauf abzielen, diese neuronale Reorganisation zu unterstützen“, betont Professor Rumpel.

    Die in der Fachzeitschrift Nature Neuroscience veröffentlichte Studie wurde in Zusammenarbeit mit Partnern aus Frankfurt (Frankfurt Institute for Advanced Studies, Goethe-Universität) und Jersusalem (Hebrew University) durchgeführt.

    Originalpublikation:
    Takahiro Noda, Eike Kienle, Jens-Bastian Eppler, Dominik F. Aschauer, Matthias Kaschube, Yonatan Loewenstein, Simon Rumpel; Homeostasis of a representational map in the neocortex; Nature Neuroscience (2025).

    Kontakt:
    Prof. Dr. Simon Rumpel
    Institut für Physiologie
    Universitätsmedizin Mainz
    E-Mail sirumpel@uni-mainz.de

    Pressekontakt:
    Veronika Wagner M. A.
    Stabsstelle Unternehmenskommunikation
    Universitätsmedizin Mainz,
    Telefon 06131 17-8391
    E-Mail pr@unimedizin-mainz.de


    Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
    Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten und jährlich rund 340.000 Menschen stationär und ambulant versorgen. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Mehr als 3.600 Studierende der Medizin und Zahnmedizin sowie rund 630 Fachkräfte in den verschiedensten Gesundheitsfachberufen, kaufmännischen und technischen Berufen werden hier ausgebildet. Mit rund 8.700 Mitarbeitenden ist die Universitätsmedizin Mainz zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor. Weitere Informationen im Internet unter https://www.unimedizin-mainz.de.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Simon Rumpel
    Institut für Physiologie
    Universitätsmedizin Mainz
    E-Mail sirumpel@uni-mainz.de


    Originalpublikation:

    Takahiro Noda, Eike Kienle, Jens-Bastian Eppler, Dominik F. Aschauer, Matthias Kaschube, Yonatan Loewenstein, Simon Rumpel; Homeostasis of a representational map in the neocortex; Nature Neuroscience (2025).

    DOI: 10.1038/s41593-025-01982-7

    https://www.nature.com/articles/s41593-025-01982-7


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Ernährung / Gesundheit / Pflege, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).