idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.07.2025 13:41

Flabby and flexible: How Machine Learning helps to build new proteins

Dr. Peter Saueressig Kommunikation
Heidelberger Institut für Theoretische Studien gGmbH

    A team of researchers from the Heidelberg Institute for Theoretical Studies (HITS) and the Max Planck Institute for Polymer Research (MPIP) have developed a model that learns how to generate proteins whose structures are highly flexible, even with patterns that are uncommon in natural proteins. Their work, presented at the International Conference on Machine Learning (ICML), marks a step towards the goal of designing new proteins for applications in biotechnology, therapeutics and environmental research.

    The natural protein universe is vast, and yet, going beyond and designing new proteins not observed in nature can yield new functions and can solve problems in medicine or materials science. The past few years have marked the golden age of de novo protein design: Machine learning methods have led to an unprecedented level of modeling accuracy. This progress enables researchers to design protein structures with specific functional properties never observed before. This is of particular interest for biotechnological applications, therapeutics development and sustainability problems, such as plastic degradation.

    One of the key features of functional proteins – large biomolecules with complex structures – is their inherent structural flexibility: They wiggle, jiggle and change shape. But current designs largely lack this important feature. For a team of researchers from the Heidelberg Institute for Theoretical Studies (HITS) and the Max Planck Institute for Polymer Research (MPIP) this was the starting point to deliberate about whether one could design proteins with a custom flexibility from scratch. They presented the results of their work at the International Conference on Machine Learning (ICML) in Vancouver, Canada.

    Matching the Flow: A model for de novo proteins

    “We wanted to build a model that learns how to generate proteins such that their structures are flexible to a given extent at a given position”, says first author Vsevolod Viliuga (MPIP). To that end, the team introduced a framework for generating flexible protein structures. This framework is based both on a neural network trained to predict flexibilities of protein backbones and a generative model for protein structure. “Natural proteins are so excellent in fulfilling their tasks because they are flexible wherever needed”, says co-author Leif Seute (HITS). “We now can design novel proteins that mimic this key property.” HITS group leader Jan Stühmer adds: “It is an extension of the Geometric Algebra Flow Matching model, in short: GAFL, that we developed last year.” GAFL is three times faster than comparable models and not only achieves high designability, but also resembles the natural proteins better in various aspects.

    In the end, the team showed that the model can generate proteins with the desired flexibility patterns, even for patterns that are uncommon in natural proteins. Frauke Gräter (MPIP), one of the team leaders, resumes: “This work is a step forward to design new proteins for applications where flexibility is required, such as enzyme catalysts.”

    Paper:
    Vsevolod Viliuga, Leif Seute, Nicolas Wolf, Simon Wagner, Arne Elofsson, Jan Stühmer, Frauke Gräter: Flexibility-conditioned protein structure design with flow matching.

    https://icml.cc/virtual/2025/poster/46289

    This study received funding from the Klaus Tschira Stiftung gGmbH (HITS Lab).


    Media contact:
    Dr. Peter Saueressig
    Head of Communications
    Heidelberg Institute for Theoretical Studies (HITS)
    +49 (0)6221 533 245
    peter.saueressig@h-its.org

    Teresa Petry
    Communication
    Max Planck Institute for Polymer Research (MPIP)
    +49 (0)6131 379-119
    pr@mpip-mainz.mpg.de


    Wissenschaftliche Ansprechpartner:

    Scientific Contact:
    Jun.-Prof. Dr. Jan Stühmer
    Junior Group Leader
    Machine Learning and Artificial Intelligence
    Heidelberg Institute for Theoretical Studies (HITS)
    https://www.h-its.org/people/dr-jan-stuhmer/

    Prof. Dr. Frauke Gräter
    Director, head of the department “Biomolecular Mechanics”
    Max Planck Institute for Polymer Research (MPIP)
    https://www.mpip-mainz.mpg.de/1001480/01_Direktor


    Weitere Informationen:

    https://www.h-its.org/2025/07/23/flips_mli/ HITS press release


    Bilder

    FLIPS, the framework for flexibility-conditioned protein design.
    FLIPS, the framework for flexibility-conditioned protein design.

    Copyright: HITS/MPIP


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Informationstechnik
    überregional
    Forschungsergebnisse, Kooperationen
    Englisch


     

    FLIPS, the framework for flexibility-conditioned protein design.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).