idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.08.2025 15:36

Ångström-scale optical microscopy deciphers conformational states of single membrane proteins

Edda Fischer Kommunikation und Marketing
Max-Planck-Institut für die Physik des Lichts

    Our remarkable ability to perform complex tasks—such as thinking, observing, and touch—stems from proteins, the tiny nanometer-sized molecules in the body. Despite decades of research, our understanding of the structure and function of such molecular machines within the cellular environment remains limited. In a new work that appeared in “Science Advances,” scientists at the Max Planck Institute for the Science of Light (MPL) show that optical microscopy under cryogenic conditions can resolve specific sites within the mechanosensitive protein PIEZO1 with Ångström precision – even within native cell membranes.

    Traditionally, protein structure has been investigated by methods such as X-ray diffraction and high-end electron microscopy. The former has an excellent resolution but requires proteins to be crystallized. The latter method can be performed at the single-protein level, but it has a weak contrast and performs poorly when the protein is surrounded by other biomolecules. Optical microscopy of samples preserved in their near native state represents a promising alternative because it can reach Ångström precision. This is being investigated by a team from the Nano-Optics division headed by MPL Director Prof. Vahid Sandoghdar. The methodological breakthrough is particularly important for studying membrane proteins, which sit on the surface of cells and act as sensors and communicators. One such protein, PIEZO1, plays a crucial role in touch and force sensation in mammals. Previous studies using cryo-electron microscopy (cryo-EM) have revealed that PIEZO1, reconstituted in a synthetic membrane, forms a triple-bladed, dome-like structure that bends the membrane. In the new work, the research team tagged the protein with fluorescent markers and could image it in a near-native state in a cell membrane at 8 K. The experiment allowed the team to uncover several distinct configurations of the PIEZO1 blades, thus shedding light on how the protein flexes and expands in response to mechanical stimuli.

    “The key innovation was rapid freezing in a liquid cryogen—a process so fast that water molecules don’t crystallize, thus keeping the protein’s structure intact,” stated the first author, Dr. Hisham Mazal. The shock-frozen sample had to be transferred to a cryostat that housed the microscope while making sure that it stays cold and never gets exposed to air. “To achieve this, we had to devise and construct an elaborate apparatus, including a cryogenic optical microscope and a dedicated vacuum shuttle,” said Prof. Sandoghdar. This approach not only preserves the native structure of the protein and its surrounding membrane, but it also dramatically extends the lifespan of fluorescent markers so that many more photons could be collected from each fluorescent molecule. “This allows us to determine the position of each molecule with a remarkable precision of just a few Ångströms, corresponding to the diameter of a few atoms,” continued Sandoghdar.

    For the future, the team plans to combine this technique with high-resolution cryo-EM. “This development opens a new frontier in structural biology and brings us an important step closer to a quantitative understanding of the molecular machinery of life,” emphasized Dr. Mazal.


    Wissenschaftliche Ansprechpartner:

    Dr. Hisham Mazal
    Max Planck Institute for the Science of Light, Erlangen
    Division “Nano-Optics”
    https://www.mpl.mpg.de / hisham.mazal@mpl.mpg.de

    Prof. Vahid Sandoghdar
    Max Planck Institute for the Science of Light, Erlangen
    Division Leader “Nano-Optics”
    https://www.mpl.mpg.de / vahid.sandoghdar@mpl.mpg.de


    Originalpublikation:

    H. Mazal, F. Wieser, D. Bollschweiler, A. Schambony, and V. Sandoghdar. Cryo–light microscopy with angstrom precision deciphers structural conformations of PIEZO1 in its native state. Science Advances (2025).
    DOI: https://doi.org/10.1126/sciadv.adw4402


    Bilder

    Fluorescent image of PIEZO1 in native cell membrane (left) and an artistic representation of its conformational states resolved with Ångström precision (right).
    Fluorescent image of PIEZO1 in native cell membrane (left) and an artistic representation of its con ...

    Copyright: Hisham Mazal

    Dr. Hisham Mazal in his lab.
    Dr. Hisham Mazal in his lab.
    Quelle: MPL, Elisabeth Offial


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Physik / Astronomie
    überregional
    Wissenschaftliche Publikationen
    Englisch


     

    Fluorescent image of PIEZO1 in native cell membrane (left) and an artistic representation of its conformational states resolved with Ångström precision (right).


    Zum Download

    x

    Dr. Hisham Mazal in his lab.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).