idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.09.2025 12:24

Humans and Machines Learn Differently

Dr. Kristina Nienhaus Medien und News
Universität Bielefeld

    How do humans manage to adapt to completely new situations and why do machines so often struggle with this? This central question is explored by researchers from cognitive science and artificial intelligence (AI) in a joint article published in the journal “Nature Machine Intelligence”. Among the authors are Professor Dr. Barbara Hammer and Professor Dr. Benjamin Paaßen from Bielefeld University.

    “If we want to integrate AI systems into everyday life, whether in medicine, transportation, or decision-making, we must understand how these systems handle the unknown,” says Barbara Hammer, head of the Machine Learning Group at Bielefeld University. “Our study shows that machines generalize differently than humans and this is crucial for the success of future human–AI collaboration.”

    Differences between humans and machines

    The technical term “generalization” refers to the ability to draw meaningful conclusions about unknown situations from known information, that is, to flexibly apply knowledge to new problems. In cognitive science, this often involves conceptual thinking and abstraction. In AI research, however, generalization serves as an umbrella term for a wide variety of processes: from machine learning beyond known data domains (“out-of-domain generalization”) to rule-based inference in symbolic systems, to so-called neuro-symbolic AI, which combines logic and neural networks.

    “The biggest challenge is that 'Generalization' means completely different things for AI and humans,” explains Benjamin Paaßen, junior professor for Knowledge Representation and Machine Learning in Bielefeld. “That is why it was important for us to develop a shared framework. Along three dimensions: What do we mean by generalization? How is it achieved? And how can it be evaluated?”

    Significance for the future of AI

    The publication is the result of interdisciplinary collaboration among more than 20 experts from internationally leading research institutions, including the universities of Bielefeld, Bamberg, Amsterdam, and Oxford. The project began with a joint workshop at the Leibniz Center for Informatics at Schloss Dagstuhl, co-organized by Barbara Hammer.

    The project also highlights the importance of bridging cognitive science and AI research. Only through a deeper understanding of their differences and commonalities will it be possible to design AI systems that can better reflect and support human values and decision-making logics.

    The research was conducted within the collaborative project SAIL – Sustainable Life-Cycle of Intelligent Socio-Technical Systems. SAIL investigates how AI can be designed to be sustainable, transparent, and human-centered throughout its entire life cycle. The project is funded by the Ministry of Culture and Science of the State of North Rhine-Westphalia.


    Wissenschaftliche Ansprechpartner:

    Professorin Dr. Barbara Hammer, Universität Bielefeld
    Technische Fakultät
    Telefon 0521 106-12121 (Sekretariat)
    E-Mail: bhammer@techfak.uni-bielefeld.de


    Originalpublikation:

    Filip Ilievski, Barbara Hammer, Frank van Harmelen, Benjamin Paassen, Sascha Saralajew, Ute Schmid, Michael Biehl, Marianna Bolognesi, Xin Luna Dong, Kiril Gashteovski, Pascal Hitzler, Giusep-pe Marra, Pasquale Minervini, Martin Mundt, Axel-Cyrille Ngonga Ngomo, Alessandro Oltramari, Gabriella Pasi, Zeynep G. Saribatur, Luciano Serafini, John Shawe-Taylor, Vered Shwartz, Gabriella Skitalinskaya, Clemens Stachl, Gido M. van de Ven, Thomas Villmann: Aligning Generalisation Between Humans and Machines. In: Nature Machine Intelligence. DOI: https://doi.org/10.1038/s42256-025-01109-4. Publication-Date 15.09.2025.


    Weitere Informationen:

    https://www.sail.nrw/ SAIL
    https://hammer-lab.techfak.uni-bielefeld.de/ The Machine Learning Group at Bielefeld University


    Bilder

    Professors Dr Benjamin Paaßen and Dr Barbara Hammer from Bielefeld University are involved in the publication.
    Professors Dr Benjamin Paaßen and Dr Barbara Hammer from Bielefeld University are involved in the pu ...
    Quelle: TRR 318 and Sarah Jonek
    Copyright: TRR 318 and Sarah Jonek


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Elektrotechnik, Gesellschaft, Informationstechnik, Kulturwissenschaften, Psychologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Professors Dr Benjamin Paaßen and Dr Barbara Hammer from Bielefeld University are involved in the publication.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).