idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.10.2025 16:56

Cooler warm periods: How the Southern Ocean controlled climate and atmospheric CO2

Ilka Thomsen Kommunikation und Medien
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

    6 October 2025/Kiel. The Southern Ocean around Antarctica plays a decisive role in the global carbon cycle – and thus in the climate system. This is supported by a new study involving the GEOMAR Helmholtz Centre for Ocean Research Kiel, published today in Nature Communications. An international team has demonstrated that between 800,000 and 430,000 years ago, a stronger layering of the Southern Ocean prevented carbon dioxide from rising from the deep ocean into the atmosphere. As a result, temperatures were significantly lower than in later warm periods.

    The Earth’s climate has fluctuated between cold and warm periods for millions of years. During the so-called “lukewarm interglacials” – warm phases between 800,000 and 430,000 years ago – atmospheric CO2 concentrations were only around 240 to 260 ppm (parts per million, i.e. molecules per one million molecules of air). Later interglacials reached values of 280 to 300 ppm. By comparison, today’s concentration has already exceeded 420 ppm due to human emissions. Why these earlier warm periods were cooler remained unclear until now. A new study now highlights the Southern Ocean, the ocean surrounding the South Pole, as a decisive factor.

    “Our data show for the first time that stronger stratification of the Southern Ocean was crucial for the comparatively cool interglacials before the Mid-Brunhes Event,” says Dr Huang Huang, the study's lead author. He completed his PhD at GEOMAR in 2019 and now works at the Laoshan Laboratory in Qingdao (China). The Mid-Brunhes Event refers to a significant climate change that occurred around 430,000 years ago. Following this event, the interglacial periods became warmer, longer and had higher CO2 levels in the atmosphere. “With our new methodological approach, we were even able to detect shorter-term variations in the ocean – providing us with a much more detailed view of Southern Ocean dynamics.”

    A look into the past with innovative laser technology

    To address their research question, the team analysed a ferromanganese crust collected from the Antarctic continental margin at a depth of around 1,600 metres. These crusts grow extremely slowly and record the chemical signature of seawater over hundreds of thousands of years.

    Using a novel laser-based technique – known as 2D laser ablation technique, in which tiny samples of material are precisely vaporised and then analysed – the researchers investigated the isotopic composition of lead preserved in the crust. Lead isotopes reveal how strongly the water layers in the ocean were mixed in the past. A new method also enables absolute dating of the layers of the same crust sample. In this way, past climate changes can be reconstructed at very high temporal resolution.

    “This new laser method opens up completely new possibilities for climate reconstruction,” says Dr Jan Fietzke, a physicist and the head of the LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) laboratory at GEOMAR. “It enables us to gain a better understanding of the role of the Southern Ocean in the global carbon cycle, which is also relevant for predicting future climate developments.”

    Stronger stratification: ocean processes determine the climate

    The data show that during the lukewarm interglacials, the Southern Ocean was more strongly stratified – the upper and lower water layers mixed less. This meant that more carbon remained stored in the deep ocean instead of reaching the atmosphere. Less atmospheric CO2 in turn led to a weaker greenhouse effect, cooler Antarctic temperatures and probably also a larger Antarctic ice sheet. The results highlight the crucial role of ocean changes for the sensitivity of the Earth’s climate system.


    Originalpublikation:

    Huang, H., Fietzke, J., Gutjahr, M., Frank, M., Kuhn, G., Zhang, X., Hillenbrand, C.-D., Li, D., Hu, J., & Yu, J. (2025). Enhanced deep Southern Ocean stratification during the lukewarm interglacials. Nature Communications.

    https://doi.org/10.1038/s41467-025-63938-6


    Weitere Informationen:

    https://www.geomar.de/n10030 Image material for download


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Meer / Klima, Umwelt / Ökologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).