Researchers in Kiel convert CO₂ into methane – newly developed catalyst outperforms industrial materials.
The energy transition requires not only new sources but also efficient ways to store and transport energy. Scientists at Kiel University (CAU) have now developed a novel catalyst that can convert carbon dioxide (CO₂) – one of the most important greenhouse gases – into methane. This gas serves as a versatile energy carrier and can be directly fed into existing natural gas networks. The new catalyst is inexpensive, durable, and performs better than industrially used materials. The findings have just been published in ChemSusChem, a journal focusing on sustainable chemistry.
Power-to-Gas: Storing CO₂ as Methane
The underlying Power-to-Gas (PtG) concept stores renewable energy in chemical form. Using electricity, researchers first generate hydrogen and then react it with CO₂ to form methane. “Under real-world conditions, the reaction mixture fluctuates due to varying electricity supply from wind and solar energy. We therefore need catalysts that perform reliably even under such variable conditions,” says Professor Malte Behrens from the Institute of Inorganic Chemistry at Kiel University, who leads the Kiel subproject within the DFG Priority Program SPP 2080.
This interdisciplinary project combines chemistry, physics, materials science, and engineering. Typical of the priority research area „Kiel Nano, Surface and Interface Science“ (KiNSIS), the scientists study materials from the atomic scale to technical applications, tailoring their properties for practical use.
Nanostructure Drives Efficiency
The Kiel team adapted a proven concept for the new catalyst: they combined the elements nickel and magnesium at the atomic level. This controlled co-crystallization forms a solid solution that, just before the actual reaction in the reactor, separates into tiny nickel particles stabilized by magnesium oxide. The magnesium oxide also enhances CO₂ adsorption, making the reaction particularly efficient.
“This nanoscale structure is key,” says doctoral researcher Anna Wolf, the study’s first author. “The nickel particles remain evenly distributed, and the magnesium oxide significantly supports methane formation.”
The result is impressive: even at relatively low temperatures of 260 °C, the catalyst converts large amounts of CO₂ into methane. In practical terms, just one kilogram of the material can produce enough methane in less than a week to heat a single-family home for an entire year.
From Lab to Industrial Application
The team attributes its success to the careful optimization of every synthesis step. “It all started with the idea of transferring a proven concept to a new material system,” says Behrens. “The fact that our catalyst now outperforms industrial materials highlights the value of systematic basic research.”
The researchers are now scaling up their lab results and testing the catalyst under real PtG conditions together with partners at the University of Hamburg. The Priority Program SPP 2080, “Catalysts and Reactors under Dynamic Operation Conditions for Energy Storage and Conversion,” has been funded by the German Research Foundation (DFG) since 2018 and is coordinated by the Karlsruhe Institute of Technology (KIT). In twelve subprojects, research teams from across Germany are working closely together on this challenge.
About the Priority research area KiNSIS
The nanoworld is governed by different laws than the macroscopic world, by quantum physics. Understanding structures and processes in these dimensions and implementing the findings in an application-oriented manner is the goal of the priority research area KiNSIS (Kiel Nano, Surface and Interface Science) at Kiel University. Intensive interdisciplinary cooperation between physics, chemistry, engineering and life sciences could lead to the development of novel sensors and materials, quantum computers, advanced medical therapies and much more. www.kinsis.uni-kiel.de/en
Professor Malte Behrens
Institute of Inorganic Chemistry, CAU
mbehrens@ac.uni-kiel.de
+49 431 880-2410
Anna Wolf, Malte Behrens: „A Novel Coprecipitation Path to a High-Performing Ni/MgO Catalyst for Carbon Dioxide Methanation“, ChemSusChem (2025), DOI:10.1002/cssc.202502052
https://www.uni-kiel.de/en/170-katalysator-aus-kiel-macht-treibhausgas-zum-energ...
https://fediscience.org/@SolidStateChemCatal_Kiel
https://www.uni-kiel.de/en/networked-matter/details/news/26-wasserstoff
https://www.itcp.kit.edu/spp2080/index.php
To demonstrate the first step of the synthesis of the new catalyst material, Anna Wolf adds a base t ...
Copyright: Christina Anders, Uni Kiel
EDX image of the catalyst particles after the reaction: nickel particles (green) are separated by ma ...
Copyright: Dr. Ulrich Schürmann, TEM Centre, Uni Kiel
Merkmale dieser Pressemitteilung:
Journalisten
Chemie, Energie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).