idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.10.2025 09:24

Ästhetische Handprothetik: Multistabiler Finger aus programmierbarem Metamaterial ermöglicht vereinfachten Prothesenbau

Anke Zeidler-Finsel Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

    Im Fraunhofer Cluster of Excellence Programmable Materials CPM haben Forschende ein multistabiles Fingergelenk für eine Handprothese entwickelt, welches vier stabile Verformungszustände annehmen kann. Die Fraunhofer-Institute LBF, IWM, ITWM und IAP arbeiten im Projekt »ProFi« zusammen, um die bisherige mehrteilige und verschraubte Lösung durch ein einzelnes programmierbares Metamaterial zu ersetzen, was den Montageaufwand erheblich reduziert. Diese passive, günstige Handprothese bietet zwei Gelenke, die eine Beugung um eine Achse erlauben und verschiedene Fingerstellungen fixieren kann. Ein großer Fortschritt für Handprothesennutzer, die Wert auf Ästhetik und Funktionalität legen.

    Passive Handprothesen mit gelenkigen Fingern sind wegen der geringen Kosten attraktiv für den Endnutzer. Im Rahmen des Projekts »ProFi« (Programmierbarer Multistabiler Finger) hat ein Fraunhofer-Forscherteam einen Finger für Handprothesen konzipiert, der die herkömmlichen mehrteiligen und verschraubten Lösungen durch ein einzelnes, leicht anpassbares multistabiles Metamaterial ersetzt. Ziel war es, die Montage zu vereinfachen und gleichzeitig die Funktionalität zu erhöhen. Der Finger kann in vier Positionen in 30°-Schritten fixiert werden.

    Ästhetische Handprothese durch programmierbare Metamaterialien

    Die am Fraunhofer LBF entwickelte Gelenkstruktur basiert auf einem Metamaterial, das ursprünglich für den Ellenbogenersatz konzipiert wurde und nur die Biegung um eine Achse ermöglicht, während die anderen Freiheitsgrade möglichst steif sind. Die Übertragung in einen kleineren Bauraum wurde durch spezielle Anpassungen realisiert, die eine 90°-Beugung in einem geringen Radius ermöglichen und gleichzeitig die Steifigkeit in der Beugungsrichtung minimieren. Unterstützt durch FEM-Simulationen wurde die Struktur optimiert, um Spannungen zu reduzieren und die Lebensdauer zu steigern.

    Die am Fraunhofer IWM entwickelten bistabilen Einheitszellen, die in das Gelenk integriert sind, basieren auf einem Konzept, das elastische Balken verwendet, die bei Zugbelastung in einen zweiten stabilen Zustand übergehen. Zur Analyse der Bistabilität und zur Optimierung der Einheitszellen-Geometrie wird mit Unterstützung des Fraunhofer ITWM die Software »ProgMatCode« eingesetzt. Die Kombination aus Gelenkstruktur und mehreren bistabilen Einheitszellen ergibt das multistabile Fingergelenk. Am Fraunhofer IAP wurde ein Finger mit zwei Gelenken aus einem Bauteil additiv gefertigt, sodass weiterhin eine individuelle Außenkontur möglich ist, aber der Montageaufwand entfällt.

    Das Gelenk kann in der Orthetik und als Greifsystem in der Automatisierungstechnik zum Einsatz kommen, wo es Effizienz und Sicherheit steigert.

    #Bistabilität, #Programmierbare Metamaterialien, #Prothetik

    Hintergrund: Was sind programmierbare Materialien und Metamaterialien?

    Komplexer werdende Anforderungen an das Materialverhalten bringen die klassischen Konzepte der Materialauswahl und -auslegung an ihre Grenzen. Das Fraunhofer Cluster of Excellence Programmable Materials CPM ist ein Zusammenschluss aus verschiedenen Fraunhofer-Instituten mit überschneidenden und sich ergänzenden Kompetenzen. Das Ziel ist die Entwicklung sogenannter »programmierbarer Metamaterialien«, die sich an Umgebungsbedingungen adaptieren, klassische Systemansätze ersetzen oder zwischen verschiedenen Eigenschaften geschaltet werden können.

    Mechanische Metamaterialien bestehen aus Werkstoffen, deren makroskopischen Eigenschaften durch eine mesoskalige (µm-cm) Strukturierung aus sogenannten Einheitszellen gezielt eingestellt werden. In programmierbaren Metamaterialien ist diese Mesostruktur nicht mehr fest, sondern verändert sich unter bestimmten Randbedingungen oder durch äußere Stimulierung reversibel. Des Weiteren können geometrische Parameter in der Struktur variiert werden, um die Funktionalität eines makroskopischen Bauteils zu optimieren.

    Was bieten programmierbare Materialien?

    Programmierbare Materialien haben das Potential einen Paradigmenwechsel im Umgang mit und beim Gestalten von Materialien einzuleiten, da sie technische Systeme aus vielen Bauteilen und Materialien durch ein einzelnes, lokal konfiguriertes Material ersetzen. Sie ermöglichen damit kleinere Systemgrößen und reduzieren die Komplexität des Gesamtsystems sowie die Abhängigkeit von großen Infrastrukturen. Gerade in hoch technologisierten Bereichen wie der Soft-Robotic können programmierbare Materialien helfen, die zunehmende Anfälligkeit durch komplexe Miniaturisierung wieder zu reduzieren.

    Neben der höheren Funktionsintegration und der damit verbundenen Ressourceneffizienz gestatten programmierbare Materialien in Zukunft auch gänzlich neue Funktionalitäten, die sich bisher nicht realisieren ließen. Besonders hohes Potenzial bieten sie dort, wo eine hohe Effektivität oder Komfort, ein geringer Platzbedarf oder eine hohe Individualität gefordert sind.

    Das Cluster erwartet insbesondere in den Branchen Medizin- bzw. Gesundheitstechnik, Umwelttechnologie und Miniaturisierung von Technologien vielversprechende Lösungen mit programmierbaren Materialien.


    Wissenschaftliche Ansprechpartner:

    Jannik Krohn M. Sc., jannik.krohn@lbf.fraunhofer.de
    Dr.-Ing. William Kaal, william.kaal@lbf.fraunhofer.de


    Weitere Informationen:

    https://www.lbf.fraunhofer.de/de/projekte/programmierbare-bistabile-fingerprothe... Mehr Infos zum Projekt
    https://cpm.fraunhofer.de/ Mehr Infos zu den Programmierbaren Materialien


    Bilder

    Die neue Fingerprothese mit zwei Gelenken, fixiert in drei unterschiedlichen Stellungen
    Die neue Fingerprothese mit zwei Gelenken, fixiert in drei unterschiedlichen Stellungen
    Quelle: Ursula Raapke
    Copyright: Fraunhofer LBF

    FEM-Simulation der Gelenkstruktur mit Vergleichsspannung in MPa (oben) und die additiv gefertigte Struktur mittels Fused Deposition Modeling (FDM) und Selective Laser Sintering (SLS) (unten).
    FEM-Simulation der Gelenkstruktur mit Vergleichsspannung in MPa (oben) und die additiv gefertigte St ...

    Copyright: Fraunhofer LBF


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Informationstechnik, Maschinenbau, Medizin, Umwelt / Ökologie, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Die neue Fingerprothese mit zwei Gelenken, fixiert in drei unterschiedlichen Stellungen


    Zum Download

    x

    FEM-Simulation der Gelenkstruktur mit Vergleichsspannung in MPa (oben) und die additiv gefertigte Struktur mittels Fused Deposition Modeling (FDM) und Selective Laser Sintering (SLS) (unten).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).