idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.11.2025 09:36

The greenhouse gas trapped in the Black Sea

Dr. Fanni Aspetsberger Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Marine Mikrobiologie

    Microorganisms in the Black Sea can produce large amounts of the potent greenhouse gas nitrous oxide (N2O). However, this gas never reaches the atmosphere because it is swiftly consumed by other microorganisms, which convert it to harmless dinitrogen gas (N2). Scientists from the Max Planck Institute for Marine Microbiology have now investigated this process and identified the key players involved.

    TO THE POINT:

    • N₂O conundrum: Black Sea microbes produce N₂O, but others quickly convert it to harmless gas.
    • Natural filter: Microbes in low-oxygen zones act as a barrier, preventing N₂O from reaching the atmosphere.
    • Climate risk: Ocean oxygen loss may boost N₂O emissions, urging more research.

    Nitrous oxide (N2O), also known as laughing gas, is a powerful greenhouse gas substantially contributing to global warming. As a crucial ozone-depleting substance, it plays an important role in regulating our climate. The oceans are a major natural source of N2O. However, our understanding of the processes involved in the turnover of N2O is still limited. Now a study led by researchers from the Max Planck Institute for Marine Microbiology in Bremen, Germany, and published in Limnology and Oceanography takes a leap forward in improving this understanding by unravelling the “Black Sea nitrous oxide conundrum”.

    Little N2O escapes the Black Sea

    In the ocean, large amounts of nitrous oxide are mainly produced in areas that lack oxygen. In these so-called deoxygenated waters, microorganisms capable of producing this gas feel at home. The Black Sea is the world’s largest anoxic basin, with a reservoir of oxygen-depleted water stretching from a depth of 150 meters down to more than 2000 meters. However, the Black Sea appears to emit only little N2O.

    “There were two possible reasons for this”, explains first-author Jan von Arx. “Either there is little production of N2O, or the produced N2O is removed before it reaches the surface. We wanted to explore this by looking at the biological processes involved in nitrous oxide production and consumption, as well as identify the microorganisms responsible for the turnover of this important greenhouse gas.”

    N2O never reaches the surface

    Thus, the scientists boarded RV Poseidon and sailed to the western Black Sea to take water samples, assess the environmental conditions and set up a large series of experiments. Indeed, they discovered that active nitrous oxide turnover takes place in the Black Sea’s suboxic zone – the zone of water with little oxygen, which separates the anoxic bottom waters from the well-oxygenated surface. “Various microorganisms produced lots of nitrous oxide through different processes. However, this production was outpaced by N2O reduction – i.e. the conversion of N2O to N2 by a different type of microorganisms”, von Arx explains. “Therefore, the small emissions of nitrous oxide from the Black Sea are likely the result of little but persistent production in the oxygenated waters, where it manages to escape consumption.”

    An understudied biological filter for a dangerous gas

    The microorganisms reducing N2O act as an efficient filter, keeping this potent greenhouse gas from reaching the atmosphere. The Max Planck scientists also managed to identify the main microorganisms involved in the process.

    “On a global perspective, we unfortunately know very little about the N2O reduction rates in the world’s oceans”, says von Arx. “Thus, our picture of environmental cycling of this important greenhouse gas remains incomplete and more research is needed. This is especially true in the light of climate change.” Due to global warming, oxygen loss from the ocean is accelerating and volumes of oxygen-depleted waters are predicted to expand in the future. Under these conditions, nitrous oxide emissions can be expected to increase.
    The scientists from Bremen are currently exploring similar questions in different oxygen-limited environments. Collecting and analysing data from many contrasting environments will allow them to obtain a fuller picture of nitrous oxide dynamics in the marine environment.

    Uncertain times for the changing ocean

    “Nitrous oxide is the third most abundant greenhouse gas and a strong ozone depleting substance that persists in the atmosphere for about 120 years. The ocean is an important natural source of N2O. Hence, we should aim to understand the dynamics of its sources and sinks there. We hope that our work can help to assess the response of N2O production from marine environments to ongoing climate change”, von Arx concludes.


    Wissenschaftliche Ansprechpartner:

    Dr. Jan von Arx
    Greenhouse Gases Research Group
    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Phone: +49 421 2028-6440
    E-mail: jarx@mpi-bremen.de

    Dr. Jana Milucka
    Greenhouse Gases Research Group
    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Phone: +49 421 2028-6340
    E-mail : jmilucka@mpi-bremen.de


    Originalpublikation:

    Jan N. von Arx, Katharina Kitzinger, Hannah K. Marchant, Gaute Lavik, Joerdis Stuehrenberg, Jon S. Graf, Daan R. Speth, Marcel M. M. Kuypers, Jana Milucka (2025): Nitrous oxide turnover in the suboxic zone of the Black Sea. Limnology and Oceanography. First published: 15 August 2025
    DOI: https://doi.org/10.1002/lno.70182


    Weitere Informationen:

    https://mpi-bremen.de/en/Page6558.html


    Bilder

    A CTD rosette on board RV Poseidon. With this device, scientists can measure environmental parameters and collect water samples from deep ocean layers.
    A CTD rosette on board RV Poseidon. With this device, scientists can measure environmental parameter ...
    Quelle: Jana Milucka
    Copyright: Max Planck Institute for Marine Microbiology

    Jan von Arx working onboard RV Poseidon
    Jan von Arx working onboard RV Poseidon
    Quelle: Jana Milucka
    Copyright: Max Planck Institute for Marine Microbiology


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Chemie, Geowissenschaften, Meer / Klima, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    A CTD rosette on board RV Poseidon. With this device, scientists can measure environmental parameters and collect water samples from deep ocean layers.


    Zum Download

    x

    Jan von Arx working onboard RV Poseidon


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).