When human cells lack oxygen, they must react. Without oxygen, the metabolism can hardly generate energy, and many vital processes begin to falter. A research team from Bielefeld University, together with international partners, has discovered how cells can save energy in this situation: they deliberately slow down the so-called secretory pathway—the transport route through which cells release substances such as proteins to the outside or forward them to other cellular compartments. The study has now been published in the journal PNAS.
The researchers show that the protein NDRG3 plays a central role in this adaptation. NDRG3 acts as a sensor for the metabolic product lactate, which accumulates during oxygen deficiency (hypoxia). The protein intervenes in the transport process between two organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. These structures function like the cell’s production and shipping departments: proteins are produced in the ER and further processed and distributed in the Golgi apparatus.
“We were able to show that NDRG3 specifically slows down transport between the ER and Golgi during periods of oxygen shortage,” explains Professor Michael Schwake, last author of the study. “This allows the cell to save energy and avoid unnecessary activity at a time when it is operating in low-power mode.”
A molecular switch that saves energy
In detail, the researchers found that NDRG3 binds to lactate—the metabolic byproduct that accumulates during oxygen deficiency—and, once “lactate-loaded,” can interact with a specific form of syntaxin-5. This protein is part of a so-called SNARE complex, a molecular membrane fusion system that shuttles small vesicles containing transport materials from one area of the cell to another. By binding to syntaxin-5, NDRG3 intentionally disrupts this process and ensures that transport between the ER and Golgi slows down
If NDRG3 is absent, this braking mechanism fails: cells lacking the protein continue transport even when oxygen is scarce. These findings thus provide a new mechanistic link between oxygen deficiency and the regulation of cellular metabolism.
New insights into disease mechanisms
Understanding these processes is not only relevant for cell biology. “Some diseases, such as muscle disorders and epilepsies, are linked to disruptions in precisely these transport pathways,” says Pia Ferle. “Our findings could therefore, in the long term, help explain why such diseases arise on a molecular level and how they might be treated more effectively.”
The study brings together two previously separate research areas: the cellular response to oxygen deficiency and the resulting increase in lactate, and the regulation of protein transport within the cell. It demonstrates how closely these processes are interconnected and how precisely cells can respond to changing environmental conditions.
Alongside Professor Schwake’s team, researchers from the United States were also involved in the study. The Bielefeld University team led the project and analyzed the molecular mechanisms in detail.
Prof. (Apl.) Dr. Michael Schwake, Bielefeld University
Fakulty of Chemistry
Telefon 0521 106-6918 (Sekretary)
E-Mail: michael.schwake@uni-bielefeld.de
Pia E. Ferle, Niklas Krause, Judith Koliwer, Jörn Michael Völker, Fabia Becker, Alexander Hillebrand, Leonie F. Schröder, Stefanie Jäger, Seby Edassery, Dali Liu, Nevan Krogan, Jeffrey N. Savas, Gabriele Fischer von Mollard und Michael Schwake: The lactate sensor NDRG3 decelerates ER-to-Golgi transport through interaction with the long isoform of syntaxin-5. The lactate sensor NDRG3. DOI: https://doi.org/10.1073/pnas.2511307122.
https://www.uni-bielefeld.de/fakultaeten/chemie/ag/bc3-mollard/arbeitskreis-schw... Website of the working group
Professor (Apl.) Dr. Michael Schwake and Pia Ferle in a Lab at Bielefeld University
Quelle: Mike-Dennis Müller
Copyright: Bielefeld University
Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wissenschaftler, jedermann
Biologie, Chemie, Ernährung / Gesundheit / Pflege, Gesellschaft, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Englisch

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).