idw - Informationsdienst
Wissenschaft
Jenoptik-Tochter "Robot Visual Systems" finanziert Doktorandenstelle an der Universität Jena
Gemeinsame Pressemitteilung von Jenoptik AG und Universität Jena
Jena (01.08.07) Der Mensch ist schon sehr früh in der Lage, aus wenigen gesehenen Beispielen zu verallgemeinern und ähnliche Objekte zu erkennen, ohne sie vorher jemals gesehen zu haben. So genügt es einem kleinen Kind, einmal eine Tüte mit Süßigkeiten gesehen und deren "Bedeutung" verstanden zu haben, um in der Folge während des Einkaufens das Warten an der Kasse für die Eltern zur Qual werden zu lassen.
Heutige maschinelle Systeme, die Erkennungsaufgaben anhand von Kameras aufgenommener Bilder lösen sollen, sind noch weit von solch einer Leistungsfähigkeit entfernt. Typisches Vorgehen ist es deshalb, eine große, repräsentative Stichprobe aus Beispielen zu sammeln und mit diesen das System anzulernen.
Solch ein Vorgehen ist aus Sicht der industriellen Anwendung in vielen Fällen nicht praktikabel, da die Datenerhebung ein extrem teuerer, zeitaufwändiger und teilweise auch praktisch unmöglicher Prozess ist. Ein Beispiel ist das automatische Erkennen und Lesen von KFZ-Kennzeichen, um eine elektronische, bargeldlose Maut zu erheben. Zwar sehen Nummernschilder prinzipiell alle ähnlich aus, jedoch erfordern gerade die kleinen Variationen zwischen verschiedenen Nationen eine Anpassung der Software, um eine hinreichend hohe Erkennungsrate zu erreichen.
Entwickelt ein Unternehmen solch ein System, so müssen innerhalb kürzester Zeit anhand weniger Beispieldaten Kennzeichen einer speziellen Nation (z. B. Österreich) oder einer Nationengruppe (z. B. Skandinavien) angelernt werden können. "Heute erhalten wir Anfragen von privaten und staatlichen Einrichtungen unterschiedlicher Länder, die innerhalb kürzester Zeit ein System entwickelt haben wollen, das Kennzeichen lesen können soll, für die wir noch keinen Erkenner haben", so Dr. Michael Lehning, Leiter der Arbeitsgruppe für bildverarbeitende Systeme bei der ROBOT Visual Systems GmbH. "Leider erhalten wir von unseren Industriepartnern in der Regel nicht genügend Beispiele, um ein System wie einen Kennzeichenleser für eine neue Nation mittels Standardmethoden zu entwickeln", beschreibt Prof. Dr. Joachim Denzler, Inhaber des Lehrstuhls für Digitale Bildverarbeitung der Friedrich-Schiller-Universität Jena, das aktuelle Problem. "Wir brauchen deshalb neue Methoden, die bestehende Erkenner anhand weniger Beispiele von bisher nicht gelernten Kennzeichen anpasst und dabei eine hohe Erkennungsrate sicherstellt", charakterisiert Diplom-Informatiker Erik Rodner sein zukünftiges Promotionsprojekt. Dazu stellt die ROBOT Visual Systems GmbH, eine Tochter der Jenaer JENOPTIK AG, vorerst für die kommenden zwei Jahre die finanziellen Mittel zur Verfügung. Ziel des geförderten Promotionsprojekts ist es, Grundlagenforschung auf dem Gebiet "Lernen aus wenigen Beispielen" zu betreiben und neue Methoden zu untersuchen und zu entwickeln, die innerhalb kürzester Zeit auch in industrielle Produkte, wie einem Kennzeichenleser, Einzug finden sollen.
Kontakt:
Prof. Dr. Joachim Denzler
Institut für Informatik der Universität Jena
Ernst-Abbe-Platz 2
07743 Jena
Tel.: 03641 / 946420
E-Mail: denzler[at]informatik.uni-jena.de
Sabine Preller
ROBOT Visual Systems GmbH
Opladener Straße 202
40789 Monheim am Rhein
Tel.: 02173 / 3940193
E-Mail: Sabine.Preller[at]robot.de
Prof. Dr. Joachim Denzler von der Universität Jena wird von der ROBOT Visual Systems GmbH gefördert.
Foto: Peter Scheere/FSU
None
Merkmale dieser Pressemitteilung:
Informationstechnik
überregional
Forschungsprojekte, Personalia
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).