idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.12.2007 20:00

Crystal-to-Metal -- Transformation on the Nanoscale

Eva-Maria Diehl Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    International cooperation finds clues to Mott's phase transition

    Unique "near-field" microscopy at the MPI für Biochemie (Martinsried near München) allowed, for the first time, viewing on the nanoscale the spontaneous appearance and growth of metallic puddles that mark the transition from an electrically insulating material ino an electrically conducting one.

    The research may lead to a better understanding of superconductors--materials that conduct electricity without energy loss--or development of better materials for powering high-speed electronics.

    In a paper published on Friday, 14 December 2007, in Science, Markus Brehm und Fritz Keilmann join an international team in describing a novel approach to viewing Mott's transition in vanadium dioxide. Their co-authors are Mumtaz Qazilbash, Greg Andreev, Brian Maple and Dimitri Basov of the University of California-San Diego; Alexander V. Balatsky of the Theoretical Division and Center For Integrated Nanotechnologies in Los Alamos; and Byung-Gyu Chae, Hyun-Tak Kim and Sun Jin Yun of the IT Convergence and Components Lab, Electronics and Telecommunication Research Institute in Korea.

    Materials such as copper metal contain electrons that are mobile enough to conduct an electrical current. In conducting materials such as copper, gold, silver, or aluminum, electrons do not hinder one another and are free to move about the lattice structure of the material. In more-complex crystal oxides, such as vanadium dioxide, electrons can become influenced by nearby positively or negatively charged particles, and their movement can become hindered. These materials are known by physicists as "correlated materials."

    Correlated materials include superconductors or semiconductors--crystals peppered or "doped" with atoms that may donate mobile electrons to the solid. Correlated materials can exhibit extraordinary changes in their physical properties, such as transforming from an insulating material to a conducting material, when subjected to relatively small changes in pressure or temperature.

    Vanadium dioxide begins becoming conductive when reaching 68°C, and is fully metallic already at 71°C. On cooling the conductivity disappears. For decades scientists have puzzled over how this transformation to a fully metallic state--known as "Mott" metal-insulator transition--occurs. Condensed-matter spectroscopist D.N. Basov and theorist A.V. Balatsky argued that the transition begins when tiny metallic puddles begin forming at sites of impurities or imperfections within the lattice, and looked out how to make such puddles visible by some sort of "nanoscale viewer".

    The infrared nanoscope developed in the lab of F. Keilmann offered a fitting solution. This instrument had already yielded widely recognized results. Recently it enabled infrared spectral inspection of single viruses of below 20 nm thickness (a human hair is 80 000 nm thick) or of modern transistors of 65 nm size. D.N. Basov set out to visit Martinsried for a successful study of Korean-prepared and characterized VO2 crystals. M. Brehm, then postdoc, observed the initially structureless, flat crystal becoming, in the critical temperature region, full of tiny metal inclusions that grew and finally coalesced. These infrared nanoscope images have revealed for the first time a new type of metal "phase" characterized by unusually strong electron correlation existing only during the transition of the material from its insulating state to its conducting state.

    The infrared nanoscope works at long wavelength of 10 000 nm. It is capable of resolving these tiny objects only because its light is virtually fine-focused by the AFM's probing tip. This mechanism is akin to how an automobile antenna concentrates radio waves into the receiver. The metal puddles highly reflect the infrared nano-focus and thus become highlighted in the image.

    The new findings will help researchers worldwide better describe and understand underlying physical laws of how charges propagate through correlated materials.The research could help materials scientist understand how to precisely dope a material with specific atoms in order to optimize conducting or superconducting behaviour or, conversely, to create materials impervious to electrical conductivity or magnetic influences.
    "What is extremely exciting about this research is that four different laboratories with complementary disciplines cooperated to use this infrared nanoscope in its first successful application for solving a solid-state physics puzzle," Keilmann said.

    Original publication:
    M.M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G.O. Andreev, B.-J. Kim, S.J. Yun, A.V. Balatsky, M.-P. Maple, F. Keilmann, H.-T- Kim, and D.N. Basov
    "Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-imaging"
    Science, 14. Dec. 2007

    Contacts:
    Dr. Fritz Keilmann
    Max-Planck-Institut für Biochemie
    Abteilung Molekulare Strukturbiologie
    Am Klopferspitz 18
    82152 Martinsried, Germany
    Tel. +49 89 8578 2617
    keilmann(at)biochem.mpg.de
    http://www.biochem.mpg.de/keilmann/

    Prof. Dimitri N. Basov
    Department of Physics
    University of California, San Diego
    La Jolla, California CA92093 USA
    Office 858 822 12 11
    Cell: 858 699 6297
    dbasov@physics.ucsd.edu
    http://infrared.ucsd.edu/


    Bilder

    Fig.1. The infrared nanoscope employs an AFM whose tip concentrates the infrared illumination to an extraordinarily fine focus of only 20 nm diameter. Scattered infrared light is recorded to obtain an ultra-resolved infrared image, here of metal puddles in VO2.
    Fig.1. The infrared nanoscope employs an AFM whose tip concentrates the infrared illumination to an ...
    MPI of Biochemistry
    None

    Fig.2. Infrared snapshot images taken during the critical temperature range of the Mott transition of VO2. The transition from insulator to metal clearly proceeds by temperature-induced growth and coalescence of initially separate metal puddles.
    Fig.2. Infrared snapshot images taken during the critical temperature range of the Mott transition o ...
    MPI of Biochemistry
    None


    Merkmale dieser Pressemitteilung:
    Elektrotechnik, Energie, Informationstechnik, Maschinenbau, Mathematik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).