idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.02.2008 14:07

Was das Blut gerinnen lässt - Wissenschaftler klären fundamentalen Schritt der Blutgerinnung auf und liefern damit einen neuen Ansatz für die Infarkttherapie

Eva-Maria Diehl Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    Zwei bisher kaum untersuchte Proteine spielen bei der Blutgerinnung eine entscheidende Rolle und könnten damit zu Zielmolekülen für die Entwicklung von Medikamenten gegen Herzinfarkt oder Schlaganfall werden. Die Ergebnisse aus einer Forschungskooperation mit Kollegen der Universität Würzburg haben Wissenschaftler um Reinhard Fässler in den aktuellen Ausgaben der Fachzeitschriften "The Journal of Experimental Medicine" und "Nature Medicine" veröffentlicht.

    Wie wird ein verletztes Blutgefäß verschlossen? Oberflächlich betrachtet mit einem Pflaster. Tatsächlich führt jedoch erst eine Gerinnungskaskade in den verletzten Gefäßen dazu, dass Blutplättchen, die sogenannten Thrombozyten, zu einem Blutpfropf verklumpen, der schließlich die Blutung stillt. Viele Details, die zur Blutstillung führen, sind bisher allerdings noch völlig unbekannt. Dabei wäre ein tiefes Verständnis dieser Prozesse nötig, beispielsweise um Erkrankungen wie Herzinfarkt oder Schlaganfall verstehen und wirksam behandeln zu können. Ursache hierfür ist nämlich ein Blutpfropf, der im erkrankten Gefäß entsteht und dort zu Durchblutungsstörungen oder zum vollständigen Verschluss des Gefäßes führt.

    Seit einiger Zeit untersucht ein Team von Wissenschaftlern der Abteilung für Molekulare Medizin am Max-Planck-Institut für Biochemie in Martinsried Proteine auf der Oberfläche von Blutplättchen, die sogenannten Integrine. Diese werden bei einem Gefäßdefekt aktiviert und vermitteln dann zum einen das Anheften der Blutplättchen an die geschädigte Gefäßwand und zum anderen ihre Vernetzung untereinander. In Kooperation mit der Gruppe von Bernhard Nieswandt von der Universität Würzburg haben die Max-Planck-Forscher Markus Moser und Siegfried Ussar nun jene Proteine untersucht, die für die Aktivierung von Integrinen auf Blutplättchen wichtig sind.

    Dabei sind die Wissenschaftler auf zwei bisher nicht gut charakterisierte Proteine gestoßen - Talin-1 und Kindlin-3 -, die Integrine offenbar direkt aktivieren. Verhinderten die Forscher die Bildung von Talin-1 bei Mäusen, so wurden auch die Integrine der Blutplättchen nicht aktiviert. Die Tiere konnten keine Blutpfropfen ausbilden, Blutungen in verletzten Gefäßen wurden nicht gestillt. Bei Mäusen, denen das Protein Kindlin-3 fehlt, kam es in verletzten Gefäßen ebenfalls nicht zur Verklumpung. Auch hier wurden die dazu notwendigen Integrine nicht aktiviert.

    Die Wissenschaftler haben auch herausgefunden, wie die Aktivierung der Integrine über Talin-1 und Kindlin-3 funktioniert: "Die Proteine verändern die Struktur der Integrine auf der Oberfläche von Blutplättchen und zwar so, dass sie an elastische Fasern binden können, die die Plättchen dann miteinander vernetzen", erklärt Markus Moser. So entsteht ein Blutpfropf und die Blutungen stoppen innerhalb kürzester Zeit.

    Der umgekehrte Weg ist nun für die klinische Anwendung denkbar: "Eine Blockade der Proteine würde dazu führen, dass gefährliche Verklumpungen in erkrankten Gefäßen aufgelöst werden oder erst gar nicht entstehen können", so der Biochemiker. Das macht Talin-1 und Kindlin-3 zu möglichen Angriffspunkten für die Vorbeugung und Therapie von Herzinfarkt oder Schlaganfall. Besonders Kindlin-3 ist für die Forscher interessant: das Protein kommt nämlich ausschließlich in Blutzellen vor; Nebenwirkungen in anderen Zellen können damit ausgeschlossen werden.

    Originalveröffentlichungen:

    "Loss of talin1 in platelets abrogates integrin activation, platelet aggregation and thrombus formation in vitro and in vivo", Bernhard Nieswandt, Markus Moser, Irina Pleines, David Varga-Szabo, Sue Monkley, David Critchley, Reinhard Fässler, 2007, Journal of Experimental Medicine.

    "Kindlin-3 is essential for integrin activation and platelet aggregation", Markus Moser, Bernhard Nieswandt, Siegfried Ussar, Miroslava Pozgajova, and Reinhard Fässler, 2008, Nature Medicine, February 17, 2008. Advanced online publication doi:10.1038/nm1722.

    Weitere Informationen erhalten Sie von:

    Dr. Markus Moser
    Abteilung Molekulare Medizin
    moser@biochem.mpg.de
    und
    Eva-Maria Diehl
    Öffentlichkeitsarbeit
    diehl@biochem.mpg.de

    Max-Planck-Institut für Biochemie
    Am Klopferspitz 18
    82152 Martinsried
    Tel.: +49 (89) 8578 2824


    Weitere Informationen:

    http://www.biochem.mpg.de/en/rd/faessler/rg/moser/ - Forschungsgruppe Dr. Markus Moser
    http://www.biochem.mpg.de/faessler - Abt. Molekulare Medizin, Prof. Dr. Reinhard Fässler


    Bilder

    Das Bild links zeigt ein Blutgefäß mit einem Blutpfropf beim Wildtyp, das Bild rechts das Blutgefäß von einer Mutante ohne Kindlin-3-Protein - hier bildet sich kein Blutpfropf.
    Das Bild links zeigt ein Blutgefäß mit einem Blutpfropf beim Wildtyp, das Bild rechts das Blutgefäß ...
    Quelle: MPI für Biochemie, Markus Moser / Reinhard Fässler


    Merkmale dieser Pressemitteilung:
    Biologie, Chemie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).