idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.04.2009 19:00

Jeder Schuss ein Treffer

Dr. Olivia Meyer-Streng Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    MPQ-Wissenschaftler entwickeln neue Methode zur vollständigen Charakterisierung einzelner ultrakurzer Laserpulse

    Momentaufnahmen vom Innenleben der Atome zu erhalten, ist eines der wichtigsten Ziele der Attosekundenphysik: Lichtblitze mit einer Dauer von nur einigen hundert Attosekunden (1 as =10 hoch -18 Sekunden) sollen die Bewegung der Elektronen um den Atomkern sichtbar machen. Erzeugt werden diese Lichtblitze mit breitbandigen, ultrakurzen intensiven Laserpulsen im sichtbaren und nahen infraroten Spektralbereich (400 - 1000 nm). Form und Phase der den Puls erzeugenden Trägerwelle müssen dafür präzise bestimmt und gesteuert werden. Die Messung war bislang nur möglich durch Mittelung über eine große Zahl von bereits phasenstabilisierten Pulsen. Ein Team um Prof. Reinhard Kienberger (über den Exzellenzcluster "Munich-Centre for Advanced Photonics" Professor an der Technischen Universität München und Leiter der selbstständigen Nachwuchsgruppe Attosekunden-Dynamik in der Abteilung Attosekundenphysik von Prof. Ferenc Krausz am MPQ) hat nun in Zusammenarbeit mit Prof. Gerhard Paulus, Universität Jena, eine neue Methode entwickelt, die es erstmals erlaubt, einzelne Laserpulse vollständig zu charakterisieren (Nature Physics, Advance Online Publication, 19. April 2009, DOI 10.1038/NPHYS1250). Dabei bestimmen die Wissenschaftler die Eigenschaften der Trägerwelle aus den Spektren der durch den einzelnen Puls in Xenon-Gas freigesetzten Elektronen. Der Vorteil dieser Methode liegt darin, dass sie auch für Pulse aus Lasern mit niedriger Repetitionsrate geeignet ist, wie man sie für die Erzeugung sehr energiereicher Attosekundenblitze benötigt. Aber die neue Technik verbessert auch die Vorraussetzungen für die Untersuchung anderer phasenabhängiger Reaktionen wie die Dynamik von Ionisationsprozessen oder molekulare Dissoziationsprozesse.

    In dem hier beschriebenen Experiment schießen die Physiker ultrakurze Laserpulse hoher Intensität in ein Gastarget und bestimmen im Anschluss daran die Energie und die Richtung der dadurch frei gesetzten Elektronen. Die Pulse sind linear polarisiert, d.h. das elektrische Feld schwingt in einer Ebene senkrecht zur Ausbreitungsrichtung. Der Intensitätsverlauf des Pulses wird durch die sogenannte "Pulseinhüllende" bestimmt. Wie in der Abbildung zu sehen ist, hängt bei einem Laserpuls aus wenigen Schwingungen die elektrische Feldstärke extrem stark von der relativen Lage, d.h. der "Phase", innerhalb der Einhüllenden ab, was wiederum die Wirkung des Pulses beim Auftreffen auf ein Atom entscheidend beeinflusst. Bei hohen Repetitionsraten verwendet man daher Laserpulse, deren Phasen bereits stabilisiert sind.

    "Alle bisherigen Experimente mitteln über eine große Zahl von Laserschüssen für einen einzigen Messpunkt und mitteln dabei über (geringfügige) Phasenfluktuationen. Bei niedrigen Wiederholraten, z.B. 10 Hertz, haben die einzelnen Pulse eine sehr unterschiedliche Phase", erklärt Prof. Reinhard Kienberger. "Hier müssen wir die absolute Phase eines Laserpulses im Einzelschuss bestimmen, und das erforderte technische Weiterentwicklung und einen grundsätzlich neuen Ansatz der Datenevaluierung."

    Je weniger Zyklen der Laserpuls enthält (siehe Abb. 1), desto stärker beeinflusst die relative Phase das Ergebnis der Reaktion. So wird - etwas vereinfacht - das höchstenergetische Photoelektron bei Puls A erwartungsgemäß nach links (in Bezug auf die Ausbreitungsrichtung) geschleudert, bei Puls B nach rechts. Dies gilt allerdings nur für die Elektronen, die genau zu dem Zeitpunkt beschleunigt werden, an dem die Feldstärke ihr Maximum erreicht hat. Sie erhalten durch das starke Laserfeld weit mehr Energie (bis das 10-fache), als sie für die Freisetzung vom Atom benötigen, weshalb sie auch als ATI (Above Threshold Inonization)-Elektronen bezeichnet werden. Bei Beschränkung auf energiereiche Photoelektronen kann man also aus deren Richtung auf die relative Phase der Trägerwelle schließen. Vergleicht man nun die Richtungsasymmetrie der ATI-Elektronen bei verschiedenen Energiebereichen, erhält man eindeutige Information über die Phase des Pulses, der die Elektronen aus dem Gas freigesetzt hat. In einer Reihe von Messungen, in denen sie nicht-phasenstabilisierte Pulse verwendeten bzw. die Phase stabilisierter Pulse gezielt variierten, wiesen die MPQ-Wissenschaftler die erwartete und auch numerisch berechnete Asymmetrie bei der Aussendung von Photoelektronen experimentell nach. Auf diese Weise bestimmten sie für einzelne Laserpulse die relative Phase der Trägerwelle mit einer Genauigkeit von nur wenigen Grad (Abb. 2). Dadurch lässt sich die Qualität der Phasenstabilisierung bei Lasern mit hoher Repetitionsrate genauer als bisher überprüfen.

    Die hier beschriebene Methode ermöglicht es weiters, gezielt Laserpulse mit der gewünschten Phase zu selektieren, wie sie für die Erzeugung von energiereichen Attosekundenblitzen im Kiloelektronenvolt-Bereich notwendig sind. Eine der größten Herausforderungen der derzeitigen Laserentwicklung besteht in der weiteren Verkürzung der Pulsdauern bis hin zu Laserpulsen aus nur einem Wellenzug. Da, wie numerische Rechnungen zeigen, die Asymmetrie in den Spektren der ATI-Elektronen mit abnehmender Pulsdauer immer stärker wird, ist das hier beschriebene Verfahren für die Charakterisierung solcher Pulse optimal.
    Olivia Meyer-Streng

    Originalveröffentlichung:
    T.Wittmann, B. Horvath, W. Helml, M. G. Schätzel, X. Gu, A. L. Cavalieri, G. G. Paulus and R. Kienberger
    "Single-shot carrier-envelope phase measurement of few-cycle laser pulses",
    Nature Physics, Advance online Publication, 19. April 2009

    Kontakt:
    Olivia Meyer-Streng
    Presse & Kommunikation
    Max-Planck-Institut für Quantenoptik
    Telefon: +49 - 89 / 32905 - 213
    Fax: +49 - 89 / 32905 - 200
    E-Mail: olivia.meyer-streng@mpq.mpg.de

    Prof. Reinhard Kienberger
    Technische Universität München
    Fakultät für Physik, E11
    Max-Planck-Institut für Quantenoptik
    Hans-Kopfermann-Str. 1
    85748 Garching, Germany
    reinhard.kienberger@mpq.mpg.de


    Bilder

    Abb. 1
    Abb. 1
    Quelle: MPQ

    Abb. 2
    Abb. 2
    Quelle: MPQ


    Merkmale dieser Pressemitteilung:
    Informationstechnik, Mathematik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).