idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.04.2009 14:56

RUBIN SFB 398: Wie Hochgeschwindigkeitszuge Schutzwände belasten

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Mit Aufnahme der Neubaustrecke Köln-Rhein/Main in den europäischen Fahrplan fuhren dort bald hundert Züge je Richtung mit Höchstgeschwindigkeiten bis zu 330 Stundenkilometern. Schon kurze Zeit darauf brachen einzelne Paneele der Lärmschutzwände an ihren Nahtstellen auf und sprangen aus den Halterungen der Pfosten. Was war passiert? Die Konstruktion wurde den geltenden Vorschriften gerecht. Aufbauend auf den Ergebnissen des SFB 398 leisten Ingenieure um Prof. Dr.-Ing. Hans-Jürgen Niemann Ursachenforschung und liefern erstmals unter realen Betriebsbedingungen eine allgemein gültige Beschreibung der Druckwellen bei Hochgeschwindigkeitszügen.

    RUBIN im Internet

    Den gesamten Beitrag mit Bildern finden Sie im Internet unter
    http://www.rub.de/rubin

    Bugwelle belastet am stärksten

    Um die Schadensursachen zu klären, veranlassten Deutsche Bahn und Bauunternehmungen ein Untersuchungsprogramm, das zugleich Grundlagen für alternative technische Lösungen und eine dauerhaftere Konstruktion von Schutzwänden liefern sollte. Daraufhin führten die Bochumer Ingenieure eine mehrtägige Messkampagne bei laufendem Fahrbetrieb durch. Auf deren Basis entwickelten sie eine allgemein gültige Beschreibung der Druckwellen von Hochgeschwindigkeitszügen bei beliebigem Wandabstand. Es zeigte sich, dass die Bugwelle des Zuges das Tragwerk der Lärmschutzwände am stärksten belastet, während die Laststöße an Kuppelstelle (zweiteiliger Zug) und Zugende mit 60 Prozent deutlich geringer sind. Die Messergebnisse liefern aber auch analoge Gleichungen, um die Materialermüdung zu erfassen (bereits bei geringeren Lasten).

    Wenn Schutzwände synchron schwingen

    Unter dem Druckstoß vom Bug des Zuges biegt sich die Lärmschutzwand zunächst nach außen, um bei abnehmendem Druck zurückzuschwingen. Diese Bewegung erreicht ihr Maximum, wenn sich Druck-Sog-Wechsel und Wand-Schwingung zunehmend synchronisieren (Resonanzeffekt). Die Eigenfrequenz der Wand ergibt sich aus ihrer Konstruktion, während die Frequenz der Druck-Sog-Stöße mit der Geschwindigkeit des Zuges zunimmt. Zu jeder Eigenfrequenz gibt es eine kritische Zuggeschwindigkeit für die größte Resonanzüberhöhung. Dynamische Berechnungen zeigten, dass bei einer Maximalgeschwindigkeit von 300 km/h in der Regel die höchste Belastung erreicht wird, auch wenn der Resonanzfall schon bei geringerer Geschwindigkeit eingetreten ist.

    Industrie und Deutsche Bahn zogen Konsequenzen

    Die der herkömmlichen Bemessung der Lärmschutzwände zugrunde liegende Windlast ist zwar größer als die Lastpulse der Bugwelle, deren dynamische Wirkung wird jedoch nicht abgedeckt. Zudem treten die Stoßlasten der Druckwelle viel häufiger auf als die Grenzwindlast. Allein aus der Bugwelle ergeben sich zwei Millionen Lastwechsel in 50 Jahren. Auf die gewonnenen Erkenntnisse reagierte die Industrie inzwischen mit neuen Wandkonstruktionen. Die Deutsche Bahn änderte die Bemessungsregeln zugunsten eines neuen realistischen Lastbildes. Danach müssen Tragwerksplaner die Sicherheit der Konstruktion unter gleichzeitiger Wind- und Druck-Sog-Last nachweisen.

    Weitere Themen im SFB-RUBIN

    Weitere Themen in RUBIN: "Garantiert sicher - planen, bauen, überwachen", Interview mit Prof. Dr. Friedhelm Stangenberg (Sprecher des SBF 398); "Simulierte Alterung: Referenzbauwerke präzisieren Lebensdauerprognose" (Lehrstuhl für Stahl- und Spannbetonbau); "Die an den Fundamenten rütteln: Langzeitverformungen bei Offshore-Windenergieanlagen" (Institut für Bodenmechanik und Felsmechanik, TU Karlsruhe); "Straßen im Stress: Wie Betonbauwerke auf dynamische Belastung reagieren" (Lehrstuhl für Baustofftechnik); "Der Beton lebt: Lebensdauerprognose von Betontragwerken" (Baumechanik/Baudynamik, Universität Kassel, Lehrstuhl für Statik und Dynamik, Ruhr-Universität Bochum); "Müde Metalle: Lebensdaueranalysen zyklisch beanspruchter Stahltragwerke" (Lehrstuhl für Statik und Dynamik), "Mit Zufällen rechnen: Stochastische Strukturoptimierung bei der Lebensdauerprognose"; SFB 398: Projekt-Überblick. RUBIN "SFB 398" ist erhältlich am Lehrstuhl für Entwurf und Konstruktion - Massivbau der Ruhr-Universität, Sekretariat: Tel. 0234/32-25980, E-Mail: gisela.wegener@ruhr-uni-bochum.de

    Weitere Informationen

    Prof. Dr.-Ing. Hans-Jürgen Niemann, Dr.-Ing. Norbert Hölscher, Fakultät für Bau- und Umweltingenieurwesen der Ruhr-Universität Bochum, Ingenieurbüro Niemann & Partner, Bochum, Tel.: 0234/904 868-0, Email: hans-juergen.niemann@ruhr-uni-bochum.de, Hoelscher@IGNundP.de

    Redaktion: Meike Drießen


    Bilder

    Merkmale dieser Pressemitteilung:
    Bauwesen / Architektur
    überregional
    Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).