idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.11.2009 10:30

Was den Stahl hart macht - Neue Experimente in Zeitlupe

Dr. Carola Langer Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

    Die Härtung von Stahl geschieht durch schnelle Abkühlung. Da die mikroskopischen Prozesse sehr schnell ablaufen, ist über etwaige Zwischenstadien nur wenig bekannt. Wissenschaftler des IFW Dresden haben nun die einzelnen Zwischenstadien einer ähnlichen Umwandlung stabilisiert. Damit ist ihnen die Realisierung eines Experiments gelungen, dass bereits 1938 vorgeschlagen wurde.

    Vereinfacht funktioniert die Härtung von Stahl so: durch schnelle Abkühlung des Stahls entstehen große Spannungen im Gefüge aus Kristallen. Zur Verringerung der Spannungen werden gefaltete Strukturen, sogenannte martensitische Strukturen gebildet, die den Stahl hart machen. Diese martensitischen Strukturen sind jedoch nicht auf Stahl beschränkt. Einige Materialien, die eine ähnliche Umwandlung wie Stahl zeigen, werden vor der eigentlichen Martensitbildung zunächst erst einmal sehr weich. Zu dieser Gruppe der martensitischen Materialien gehört eine Legierung aus 70% Eisen und 30% Palladium. Bereits 1938 wurde in einem Nature-Artikel von Hultgren und Zapffe diese Legierung vorgeschlagen, um an ihr die Umwandlungen in Stahl näher zu untersuchen.

    Zusammen mit Kollegen von den Universitäten Mainz und Frankfurt haben Wissenschaftler des IFW Dresden nun den weichen Zustand vor der Martensitbildung geschickt ausgenutzt, um die einzelnen Zwischenstadien dieser Umwandlung zu stabilisieren. Dazu haben sie Schichten der Legierung aus 70% Eisen und 30% Palladium auf verschiedene einkristalline Trägermaterialien aufgedampft. Diese Trägermaterialien geben die Kristallstruktur vor und sorgen in der sich bildenden Eisen-Palladium-Schicht für eine bestimmte Verspannung. Durch die Wahl unterschiedlicher Trägermaterialien konnte das gesamte Spektrum der martensitischen Umwandlung eingefroren und in Form einzelner Schichten, Schritt für Schritt nachempfunden werden. Hierdurch wurden detaillierte physikalische Untersuchungen an den sonst kaum zugänglichen Zwischenstadien ermöglicht. So konnte gezeigt werden, dass die Schichten deutlich unterschiedliche magnetische Eigenschaften ausweisen, obwohl sie aus ein und derselben Legierung bestehen und sich lediglich durch den Grad der Verspannung unterscheiden.

    Der Ansatz, ein von sich aus weiches Material zu verwenden, erlaubt eine deutlich größere Variation von Materialeigenschaften als mit den bisherigen Materialien möglich war. Zudem können deutlich dickere, besser handhabbare verspannte Schichten hergestellt werden. Die Forscher vom IFW Dresden und den Universitäten Frankfurt sowie Mainz hoffen nun, dass sich mit diesem Verfahren die physikalischen Materialeigenschaften auch anderer martensitscher Materialien maßgeschneidert einstellen lassen. So könnte man z.B. die elektrische Leitfähigkeit, die Katalysatorfunktion oder die optischen Funktionen solcher Materialien verbessern bzw. an die jeweilige Anwendung anpassen.

    Die Ergebnisse stellen einen wesentlichen Fortschritt für eine neue Klasse von aktiven Materialien dar. In den sogenannten magnetischen Formgedächtnislegierungen, zu denen auch die Legierung aus Eisen und Palladium gehört, kann durch das Anlegen eines Magnetfeldes eine sehr große Dehnung von bis zu 10% erreicht werden. Zur Erforschung dieser neuartigen Werkstoffklasse fördert die Deutsche Forschungsgemeinschaft (DFG) das Schwerpunktprogramm 1239, das vom IFW Dresden koordiniert wird. Details zum DFG Schwerpunktprogramm SPP1239 unter: www.MagneticShape.de.

    Die Ergebnisse sind am 17. November 2009 im Fachblatt Physical Review Letters veröffentlicht.
    Quelle: Buschbeck et al., Full tunability of strain along the fcc-bcc Bain path in epitaxial films and consequences for magnetic properties, Physical Review Lett. 103, 216101 (2009)

    Kontakt
    Dr. Sebastian Fähler
    IFW Dresden
    Tel.: 0351 4659-588
    E-Mail: s.faehler@ifw-dresden.de

    Presse- und Öffentlichkeitsarbeit
    Dr. Carola Langer
    IFW Dresden
    Tel.: 0351 4659-234
    E-Mail: c.langer@ifw-dresden.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).