idw - Informationsdienst
Wissenschaft
Neurodegenerative Erkrankungen stellen eine der größten Herausforderungen unserer alternden Gesellschaft dar. Die Erforschung dieser Krankheiten wird aber wegen der eingeschränkten Verfügbarkeit von menschlichem Gehirngewebe besonders erschwert. Wissenschaftler des Forschungszentrums Life & Brain und der Klinik für Neurologie der Universität Bonn haben nun einen Umweg genommen: Sie reprogrammierten Hautzellen von Patienten mit einer erblichen Bewegungsstörung in so genannte induziert pluripotente Stammzellen (iPS-Zellen) und gewannen daraus funktionierende Nervenzellen. Daran entschlüsselten sie, wie die Krankheit entsteht. Ihre Ergebnisse erscheinen nun in der Fachzeitschrift „Nature“.
Im Zentrum der aktuellen Bonner Studie steht die so genannte Machado-Joseph-Erkrankung. Dabei handelt es sich um eine Störung der Bewegungskoordination, die ursprünglich bei portugiesischstämmigen Bewohnern der Azoren beschrieben wurde und heute die häufigste dominant vererbte Kleinhirn-Ataxie in Deutschland darstellt. Die Mehrzahl der Patienten entwickelt zwischen dem 20. und 40. Lebensjahr Gangstörungen und eine Reihe anderer neurologischer Symptome. Ursache der Erkrankung ist eine sich wiederholende Erbgutsequenz im Ataxin-3-Gen, die zur Verklumpung des entsprechenden Proteins führt, wodurch schließlich die Nervenzellen im Gehirn geschädigt werden. Unklar war bislang, warum die Erkrankung nur Nervenzellen betrifft und wie die abnorme Proteinverklumpung ausgelöst wird.
„Alleskönner“ aus Hautproben von Patienten
Um den Krankheitsprozess auf molekularer Ebene zu studieren, stellten Wissenschaftler um den Stammzellforscher Prof. Dr. Oliver Brüstle am Institut für Rekonstruktive Neurobiologie der Universität Bonn zunächst aus kleinen Hautproben von Patienten so genannte induziert pluripotente Stammzellen (iPS-Zellen) her. Es handelt sich dabei um Zellen, die in ein sehr frühes, undifferenziertes Stadium zurückversetzt werden. Diese „Alleskönner“ lassen sich – einmal gewonnen – nahezu uneingeschränkt vermehren und in alle Körperzellen ausreifen. In einem nächsten Schritt wandelte das Team um Prof. Brüstle die iPS-Zellen in Gehirnstammzellen um, aus denen die Wissenschaftler beliebig Nervenzellen für ihre Untersuchungen entwickeln konnten.
Das Besondere: Da die Nervenzellen aus den Patienten selbst stammen, tragen sie dieselben genetischen Veränderungen und können so als zelluläres Modell der Erkrankung dienen. „Diese Methode erlaubt uns die Erforschung der Erkrankung an den wirklich betroffenen Zellen, zu denen wir sonst keinen Zugang hätten - fast so, als hätten wir das Gehirn des Patienten in die Zellkulturschale gebracht“, sagt Dr. Philipp Koch, langjähriger Mitarbeiter von Prof. Brüstle und einer der Erstautoren der Studie. Zusammen mit seinem Kollegen Dr. Peter Breuer von der Klinik und Poliklinik für Neurologie des Bonner Universitätsklinikums stimulierte Koch elektrisch die künstlich geschaffenen Nervenzellen. Dabei konnten die Forscher zeigen, dass die Bildung der Proteinaggregate unmittelbar mit der elektrischen Aktivität der Nervenzellen zusammenhängt. „Eine Schlüsselrolle spielt dabei das Enzym Calpain, das durch den erhöhten Kalziumgehalt stimulierter Nervenzellen aktiviert wird“, so der Biochemiker Breuer. „Dieser neu identifizierte Mechanismus erklärt, warum die Erkrankung ausschließlich Nervenzellen betrifft“, betont Prof. Brüstle.
Reprogrammierte Nervenzellen als Studienobjekt für Medikamente
„Die Studie verdeutlicht, welches Potential diese spezielle Art der Stammzellen für die neurologische Krankheitsforschung hat“, sagt Prof. Dr. Thomas Klockgether, Klinischer Direktor des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) und Direktor der Bonner Universitätsklinik für Neurologie, dessen Team in dieser Studie eng mit den Wissenschaftlern um Prof. Brüstle zusammenarbeitete. Für Prof. Brüstle Grund genug, bereits über neue Strukturen nachzudenken: „Wir brauchen interdisziplinäre Abteilungen, in denen Wissenschaftler aus der Stammzellbiologie und der molekularen Krankheitsforschung Seite an Seite zusammenarbeiten.“ Prof. Dr. Dr. Pierluigi Nicotera, wissenschaftlicher Vorstand und Vorstandsvorsitzender des DZNE, pflichtet ihm bei: „Das DZNE hat großes Interesse an Kooperationsstrukturen. Denn reprogrammierte Stammzellen weisen für das Verständnis der Pathologie neurodegenerativer Erkrankungen ein enormes Potenzial auf.“
In einem nächsten Schritt wollen Prof. Brüstle und seine Kollegen von Life & Brain reprogrammierte Nervenzellen für die Entwicklung von Wirkstoffen zur Behandlung neurologischer Erkrankungen einsetzen.
Publikation: Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., Doerr, J., Ladewig, J., Mertens, J., Tüting, T., Hoffmann, P., Klockgether, T., Evert, B.O., Wüllner, U., Brüstle, O. (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature doi:10.1038/nature10671
Kontakt:
Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologie
LIFE & BRAIN Center
Universität Bonn
Telefon: +49-228-6885-500
E-Mail: brustle@uni-bonn.de
http://www3.uni-bonn.de/Pressemitteilungen/324-2011 Foto zur Pressemitteilung
Merkmale dieser Pressemitteilung:
Journalisten, jedermann
Medizin
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).