idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.12.2011 16:56

Wenn die Datenleitung in die Zelle versagt

Dagmar Baroke Abteilung Kommunikation
Paul Scherrer Institut (PSI)

    Forscher am Paul Scherrer Institut haben eine blockierte Rezeptorstruktur aufgeklärt

    Lebende Zellen empfangen dauernd Informationen von aussen, die über Rezeptoren in das Zellinnere weitergeleitet werden. Genetisch bedingte Fehler in solchen Rezeptoren sind der Grund für zahlreiche Erbkrankheiten, darunter verschiedene hormonelle Funktionsstörungen oder Nachtblindheit.
    Bei einem solchen Fehler bleibt der Rezeptor im „eingeschalteten“ Zustand hängen, als wäre er dauerhaft dem äusseren Reiz ausgesetzt. Schliesslich wird er ausser Betrieb gesetzt. Forschern des Paul Scherrer Instituts ist es nun gelungen, die exakte Struktur eines im aktiven Zustand blockierten Rezeptors aufzuklären.

    Eine lebende Zelle muss dauernd auf Informationen reagieren, die von aussen bei ihr ankommen. Dafür zuständig, die Information ins Innere weiterzuleiten, sind Rezeptoren, komplexe Proteinmoleküle, die in der Zellmembran sitzen. „Man kann diese Rezeptoren mit einer Türklingel vergleichen. Wenn jemand an der Tür klingelt, kann er im Haus Aktivität auslösen, ohne selbst hineinzugehen“, erklärt Xavier Deupi, Forscher am Paul Scherrer Institut. „Genauso löst ein Rezeptor chemische Vorgänge in der Zelle aus, wenn von aussen ein Reiz bei ihm ankommt. Das kann Licht sein oder auch ein Hormonmolekül, das selbst nicht in die Zelle eindringt.“ Es gibt rund achthundert solcher Rezeptoren, die für verschiedenste Reize zuständig sind.

    Die kaputte Türklingel der Zelle

    Die Rezeptoren kann man sich als winzige, sehr exakte biologische Maschinen vorstellen, die schon bei kleinsten Abweichungen vom Bauplan nicht richtig funktionieren. Nun ist es einer Gruppe um Jörg Standfuss am Paul Scherrer Institut gelungen, die Struktur eines mutierten und damit fehlerhaften Rezeptors zu bestimmen und so die Grundlage eines solchen Fehlers zu entschlüsseln. „Der untersuchte Rezeptor zeigte einen recht typischen Fehler – er blockiert im aktiven Zustand. Um im Bild der Klingel zu bleiben: Es gibt einen passiven Zustand, in dem die Klingel für Besucher bereit ist, und den aktiven, in dem sie tatsächlich gedrückt wird und läutet“, hält Standfuss fest. „Wenn sie aber weiterläutet, obwohl niemand mehr drückt, ist sie nicht nur nutzlos, sondern auch lästig, sodass man sie in der Regel ausser Betrieb nehmen wird.“ Das Gleiche kann in der Zelle passieren – ein Rezeptor bleibt im aktiven Zustand hängen und täuscht ein Signal vor. Schliesslich blockiert die Zelle den Rezeptor und setzt ihn so ausser Betrieb. „Das ist für die Zelle in mehrfacher Weise belastend. Zum einen fehlt der funktionelle Rezeptor und wichtige Signalwege werden damit blockiert. Zusätzlich können sich kaputte Rezeptoren aber auch bis zu einem Punkt anreichern, an dem sie giftig werden und so zum Tod der Zelle führen“, so Standfuss.

    Ein falscher Buchstabe

    Das untersuchte Protein verhakt sich gewissermassen in der aktiven Form und findet nicht mehr in die passive zurück. Dabei ist der Unterschied zwischen der „gesunden“ und der mutierten Form scheinbar gering: eine einzige falsche Aminosäure, also ein falscher Proteinbaustein. Im Erbgut entspricht das einem einzigen Basenpaar, gewissermassen einem einzigen Buchstaben in einer langen Bauanleitung. Dieser kleine Fehler führt aber dazu, dass ein Bauteil falsch geformt ist und die ganze Maschine nicht mehr funktioniert. Mithilfe von Untersuchungen an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts ist es den Forschern nun gelungen, den genauen Aufbau des fehlerhaften Teils zu bestimmen und so zu zeigen, wie der Fehler zustande kommt. Diese Versuche wurden an einem künstlich veränderten Protein durchgeführt, an dem sich die Prinzipien besonders gut sichtbar machen lassen.

    Die untersuchten Rezeptoren gehören zur Klasse der G-Protein-gekoppelten Rezeptoren. Sie sind in die Zellmembran eingebaut und können so Informationen von aussen nach innen weiterleiten. Der Teil ausserhalb der Zelle ist jeweils für einen spezifischen Reiz empfänglich – etwa Licht oder die Ankunft eines Hormonmoleküls. Kommt ein solcher Reiz an, verändert sich die Struktur des gesamten Moleküls, sodass sich in dem Teil, der ins Zellinnere ragt, ein Freiraum bildet. In diesem Freiraum kann dann ein sogenanntes G-Protein andocken. Der Rezeptor spaltet das G-Protein in zwei Teile auf und lässt diese in die Zellflüssigkeit frei, wo sie einen bestimmten Vorgang in der Zelle auslösen. Im Normalfall formt sich der Rezeptor nach kurzer Zeit wieder zurück und ist bereit für den nächsten Reiz. Ein fehlerhafter Rezeptor hingegen verbleibt in der geöffneten Form, sodass sich immer wieder neue G-Proteine binden können. Schliesslich wird aber stattdessen ein „Arrestin“ genanntes Protein angekoppelt, das den Rezeptor blockiert und so ausser Betrieb setzt.

    Krankheiten verstehen

    Zahlreiche Erbkrankheiten werden durch solche kleinen Fehler im Aufbau von Rezeptoren verursacht, die wiederum auf Fehler im Erbgut zurückgehen. So ist ein wichtiges langfristiges Ziel der Forschungsarbeiten, die Veränderungen zu verstehen, die hinter verschiedenen Krankheiten stecken und damit die Voraussetzung für die Entwicklung von Therapien zu schaffen. „Am Paul Scherrer Institut betreiben wir Grundlagenforschung – wir wollen die Mechanismen hinter den Erkrankungen verstehen. Die Entwicklung der Medikamente und die klinischen Studien führt die pharmazeutische Industrie durch. Wenn es darum geht, die grundlegenden relevanten Fragen zu identifizieren arbeiten wir eng zusammen“, betont Standfuss.

    Text: Paul Piwnicki

    --------------------------------------------------

    Über das PSI

    Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

    --------------------------------------------------

    Kontakt:
    Dr. Jörg Standfuss, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
    Telefon: +41(0)56 310 2586, E-Mail: joerg.standfuss@psi.ch [Deutsch, Englisch]

    Dr. Xavier Deupi, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,
    Telefon: +41(0)56 310 3337, E-Mail: xavier.deupi@psi.ch [Englisch, Spanisch, Katalanisch]

    Originalveröffentlichung:
    Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II; Xavier Deupi, Patricia Edwards, Ankita Singhal, Benjamin Nickle, Daniel Oprian, Gebhard Schertler, and Jörg Standfuss; PNAS Early Edition week of December 19, 2011; DOI : http://dx.doi.org/10.1073/pnas.1114089108


    Weitere Informationen:

    http://www.psi.ch/media/wenn-die-datenleitung-in-die-zelle-versagt - Webdarstellung der Mitteilung
    http://www.psi.ch/media/forschen-mit-synchrotronlicht - Hintergrund: Forschen mit Synchrotronlicht
    http://www.psi.ch/media/strukturen-von-proteinen - Hintergrund: Untersuchung von Proteinstrukturen
    http://www.psi.ch/media/grundstrukturen-des-sehens-entschluesselt - Medienmitteilung der Arbeitsgruppe vom März 2011: "Grundstrukturen des Sehens entschlüsselt"


    Bilder

    Struktur eines Lichtrezeptors – blockiert im aktiven Zustand. Das Vitamin-A-Molekül funktioniert als Sensor für das ankommende Licht. Unten ist der Baustein markiert, der für die Blockade des Rezeptors verantwortlich ist. In hellgrau ist die Zellmembran angedeutet.
    Struktur eines Lichtrezeptors – blockiert im aktiven Zustand. Das Vitamin-A-Molekül funktioniert als ...
    Grafik: Paul Scherrer Institut/J. Standfuss
    None

    Jörg Standfuss und Xavier Deupi diskutieren ihre Forschungsergebnisse
    Jörg Standfuss und Xavier Deupi diskutieren ihre Forschungsergebnisse
    Foto: Paul Scherrer Institut/M. Fischer
    None


    Anhang
    attachment icon Lichtrezeptor während der Aktivierung durch Licht.

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).