idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.06.2014 10:16

DNA Nano-Adapter: Impuls für Einzelmolekül DNA-Sequenzierung

Stephan Nachtigall Presse und Kommunikation
Technische Universität Braunschweig

    Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Braunschweig haben einen winzigen Adapter entwickelt, der es ermöglicht, Moleküle mit Nanostrukturen im ein Milliardstel Meter Bereich zu verbinden und an einem gewünschten Ort zu platzieren. Die Entwicklung kann vor allem für die Entschlüsselung des Erbgutes (DNA-Sequenzierung) von Bedeutung sein, die als Schlüsselmethode bei der Analyse genetisch bedingter Erkrankungen gilt. In der aktuellen Ausgabe der Fachzeitschrift „Nano Letters“ stellen die Wissenschaftlerinnen und Wissenschaftler nun ihre Forschungsergebnisse vor.

    Bei der Einzelmolekül DNA-Sequenzierung werden einzelnen Grundbausteine der DNA-Stränge, die Nukleotide, analysiert. „Eine revolutionäre Methode ist, wenn in Echtzeit beobachtet wird, wie einzelne Nukleotide zu einem ganzen DNA-Strang zusammengefügt werden“, erläutert Prof. Philip Tinnefeld. „Das ist fast wie in einer Live-Übertragung.“ Bestimmte Enzyme, die so genannten Polymerasen, inkorporieren die Nukleotide und fungieren dabei ähnlich wie der Zipper in einem Reißverschluss, der dabei hilft, die beiden offenen Häkchen zusammenzufügen und zu verschließen. Um diesen Prozess zu beobachten, nutzen Wissenschaftler dazu bisher spezielle Objektträger, mit denen sie der Reihenfolge der unterschiedlichen Nukleotiden auf die Schliche kommen. Auf einer Glasplatte wird ein Metallfilm mit winzigen, hochpräzise angebrachten Löchern aufgetragen. Diese Löcher nennt man Zero Mode Waveguides (ZMWs). „Eine besondere Herausforderung für diese Anwendung ist das Bestücken dieser Nano-Löcher mit exakt einer Polymerase, an die dann die Nukleotide andocken können“, erklärt Prof. Tinnefeld. Üblicherweise werden diese Biomoleküle eher zufällig auf die ZMWs verteilt. Dadurch bleiben viele unbesetzt oder andere beherbergen mehr als ein Polymerase-Molekül, so dass selbst bei optimalem Beladen auf diese Weise nur 37 Prozent der Fläche ausgenutzt werden, so der Experte für Nano-Bio-Wissenschaften.

    Moleküle verbinden und richtig platzieren
    Seiner Forschergruppe ist es nun gelungen, eine neue Strategie für eine effizientere Nutzung der ZMWs vorzuschlagen. Dafür konnten die Braunschweiger Nano-Experten vom Institut für Physikalische und Theoretische Chemie im Laboratory of Emerging Nanometrology der Technischen Universität Braunschweig auf ihre bisherigen Erfahrungen bei der Anwendung der so genannten DNA-Origami Technik zurückgreifen: Dabei falten die Wissenschaftlerinnen und Wissenschaftler buchstäblich aus einzelnen Strängen des Erbgutes von Viren eine Vielzahl passgenauer Strukturen. Nun haben sie diese Strukturen so angepasst, dass in jedem ZMW exakt ein Nanoadapter binden kann. Die Nanoadapter bieten zusätzlich Anbindestellen für funktionelle Einheiten, wie etwa einzelne fluoreszierende Farbstoffe oder für die DNA-Sequenzierung wichtigen Polymerase-Moleküle. „In unserer neuen Strategie verbinden wir einzelne Moleküle aus dem DNA-Origami mit den lithographisch hergestellten Nanostrukturen der ZMWs. Dieses Verfahren kann die Effizienz der DNA-Sequenzierung verbessern und auch in anderen Gebieten wie der molekularen Elektronik kann es Anwendungsmöglichkeiten geben, da wir die Welt der Moleküle an lithographisch hergestellte Strukturen anpassen können“, fasst Prof. Tinnefeld zusammen.

    Zum Forschungsprojekt
    Das von der Arbeitsgruppe NanoBioSciences von Prof. Philipp Tinnefeld (Institut für Physikalische und Theoretische Chemie) im neuen Laboratory of Emerging Nanometrology der Technischen Universität Braunschweig durchgeführte Forschungsprojekt wurde durch einen Starting Grant des European Research Council (SiMBA) gefördert.

    Publikation
    E. Pibiri, P. Holzmeister, B. Lalkens, G.P. Acuna, P. Tinnefeld (2014):Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nano-Adapters - Nano Lett.

    Kontakt
    Prof. Philip Tinnefeld
    Dr. Guillermo Acuna
    Institut für Physikalische und Theoretische Chemie
    Arbeitsgruppe NanoBioSciences
    Laboratory of Emerging Nanometrology
    Technische Universität Braunschweig
    Hans-Sommer-Strasse 10
    38106 Braunschweig
    Tel: 0531 391 5330
    E-Mail: p.tinnefeld@tu-braunschweig.de
    www.tu-braunschweig.de/pci
    www.tu-braunschweig.de/mib/lena


    Weitere Informationen:

    http://blogs.tu-braunschweig.de/presseinformationen/?p=6978


    Bilder

    Strategie für Immobilisierung: mit einem Fluoreszenzfarbstoff beladene DNA Origami (graue Rechtecke) füllen die kleinen Löcher in einem Metallfilm so aus, dass nur ein Adapter pro Loch Platz hat.
    Strategie für Immobilisierung: mit einem Fluoreszenzfarbstoff beladene DNA Origami (graue Rechtecke) ...
    Quelle: TU Braunschweig

    Vergleich zwischen optimaler Poisson-Verteilung und der experimentell gemessenen Verteilung in ZMWs mit 200 nm Durchmesser.
    Vergleich zwischen optimaler Poisson-Verteilung und der experimentell gemessenen Verteilung in ZMWs ...
    Quelle: TU Braunschweig


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungs- / Wissenstransfer, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).