idw - Informationsdienst
Wissenschaft
Neue Erkenntnisse über die Entstehung von Herzmuskelerkrankungen (Kardiomyopathien) haben jetzt Forscher des Max-Delbrück-Centrum (MDC) Berlin gewonnen. Im Mittelpunkt der im Journal of Clinical Investigation (doi:10.1172/JCI74523)* veröffentlichten Arbeit von Dr. Henrike Maatz, Dr. Marvin Jens und Dr. Martin Liss steht ein Protein, kurz RBM20 (RNA binding motif protein 20) genannt, das hauptsächlich im Herzen vorkommt. Die Forscher konnten zeigen, dass das Protein ein ganzes Orchester von Zielmolekülen dirigiert, darunter eine Reihe neuer Mitspieler für diese lebensbedrohlichen Erkrankungen. Inwieweit ihre Erkenntnisse auch für die Klinik von Bedeutung sind, wird die Zukunft zeigen.
Erst vor zwei Jahren hatten der Genetiker Prof. Norbert Hübner und der Herz-Kreislaufforscher Prof. Michael Gotthardt (MDC) zusammen mit amerikanischen Kollegen gezeigt, dass RBM20 eine Schlüsselrolle für die Entstehung von Kardiomyopathien einnimmt. Dabei ging es um Titin, das größte Protein des Menschen. Titin sorgt dafür, dass sich die Herzkammern regelmäßig mit Blut füllen, um es dann angereichert mit Sauerstoff wieder in den Kreislauf zu pumpen. Eine Mutation in dem Gen des Helferproteins RBM20 verändert Titin in seinem Aufbau derart, dass das Herz schwächelt und den Körper nicht mehr ausreichend mit Sauerstoff versorgt.
Aber wie sich jetzt unter anderem an Gewebeproben von Herzen von Patienten mit Herzversagen zeigt, hat das Protein RBM20 weitaus mehr Einfluss auf die Funktion des Herzmuskels, als bisher angenommen. Es bindet nicht nur an die RNA für Titin – die DNA wird in RNA für die Proteinproduktion umgeschrieben – , sondern an viele andere verschiedene Zielstrukturen, darunter an die RNA von Genen, die die Forschung als Mitverursacher von Kardiomyopathien bereits kennt. RBM20 bindet aber auch an die RNA von Genen, von denen Dr. Maatz aus der Forschungsgruppe von Prof. Hübner und ihre Kollegen vermuten, dass sie ebenfalls zu diesen schweren Herzerkrankungen beitragen, da sie zu dem von RBM20 regulierten Netzwerk gehören. Unterstützt wurden Dr. Maatz und ihre Kollegen bei dieser Arbeit von dem Bioinformatiker Dr. Marvin Jens, aus der Forschungsgruppe von Prof. Nikolaus Rajewsky, sowie Dr. Markus Landthaler und dem Proteinforscher Prof. Matthias Selbach.
Entscheidend bei der Funktion von RBM20 ist ein Vorgang, den die Forschung als alternatives Spleißen bezeichnet. Dabei werden aus der in den Genen enthaltenen Bauanleitung für Proteine die Abschnitte - Exons – herausgeschnitten und als Boten-RNA neu zusammengefügt, die die Zelle für die Herstellung von Proteinen braucht. Dr. Maatz und ihre Kollegen konnten zeigen, dass RBM20 diesen Prozeß, meist dadurch reguliert, dass es das Herausschneiden und den Zusammenbau von Exons unterdrückt, wodurch ein Protein kürzer wird. Alternatives Spleißen ändert somit den Aufbau der Proteine und im Falle des von RBM20 regulierten Spleißens können dadurch herzspezifische Varianten (Isoformen) eines Proteins entstehen.
Wie die Forscher jetzt wissen, bindet RBM20 nicht nur an die RNA für Titin, sondern auch an eine Reihe weiterer RNAs und verändert bei einer Mutation im RBM20-Gen deren Zusammenbau mit daraus resultierender Kardiomyopathie. „Wir konnten weiterhin zeigen, dass nicht nur Mutationen in RBM20, sondern auch die Menge an RBM20 einen Einfluss auf den Splicevorgang in Herzzellen von Kardiomyopathiepatienten hat. Das ist klinisch relevant, da die Beeinflussung der RBM20 Menge ein mögliches therapeutisches Ziel sein könnte,“ so Dr. Maatz. Die Forscher hoffen, dass ihre neuen Erkenntnisse über die Mechanismen der Entstehung von Kardiomyopathien für die Entwicklung von Therapien von Bedeutung sein können.
*RBM20 orchestrates cardiac pre-mRNA processing by targeting intronic splicing silencers
Henrike Maatz1, Marvin Jens2, 12, Martin Liss3, 12, Sebastian Schafer1, Matthias Heinig1, 4, Marieluise Kirchner5, Eleonora Adami1, Carola Rintisch1, Vita Dauksaite3, Michael H Radke3, Matthias Selbach5, Paul JR Barton6, 7, Stuart A Cook6, 7, 8, 9, Nikolaus Rajewsky2, Michael Gotthardt3, 10, Markus Landthaler11 & Norbert Hübner1, 8, 10
1. Max Delbrück Center for Molecular Medicine (MDC), 13125 Berlin, Germany
2. Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
3. Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
4. Department of Computational Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
5. Laboratory of Cell Signalling and Mass Spectrometry, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
6. National Heart and Lung Institute, Cardiovascular Genetics and Genomics, Sydney Street, London SW3 6NP, UK
7. Royal Brompton NIHR Cardiovascular Biomedical Research Unit, London, SW3 6NP, UK
8. Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857
9. National Heart Center Singapore, 5 Hospital Drive, Singapore 169609
10. DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
11. RNA Biology and Posttranscriptional Regulation, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
12. These authors contributed equally to this work
Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Biologie, Medizin
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).