idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.08.2014 19:00

Einfach komplex – Die Entstehung unserer Körperachsen

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Der Süßwasserpolyp Hydra, der zu den mehr als 600 Millionen Jahre alten Nesseltieren gehört, kann helfen zu verstehen, wie unsere Körperachsen in der Evolution entstanden sind. Das zeigen Forschungen von Wissenschaftlern aus Heidelberg und Wien zur Bildung neuer Polypen in der asexuellen Vermehrung von Hydra, deren Ergebnisse in der Zeitschrift „Nature“ veröffentlicht wurden. Die Heidelberger Forscher haben den Vermehrungsprozess, bei dem seitlich am Muttertier Knospen neuer Tochterpolypen entstehen, molekular aufgeklärt. Die Vorgänge, die sich dabei auf molekularer Ebene abspielen, sind frappant ähnlich zu denen bei der Entstehung der Körperachsen in frühen Embryonen von Wirbeltieren.

    Sperrfrist: Sonntag, 24. August 2014, 19.00 Uhr

    Heidelberg, 23. August 2014

    Einfach komplex – Die Entstehung unserer Körperachsen
    Evolutionäre Verbindungen zwischen Menschen und vorzeitlichen Tieren – Studie in „Nature“ veröffentlicht

    Der Süßwasserpolyp Hydra, der zu den mehr als 600 Millionen Jahre alten Nesseltieren gehört, ist berühmt für seine nahezu unbegrenzte Regenerationsfähigkeit und daher ein Modell der molekularen Stammzell- und Regenerationsforschung. Dieser einfache und radiär symmetrisch gebaute Polyp kann auch helfen zu verstehen, wie unsere Körperachsen in der Evolution entstanden sind. Das zeigen Forschungen von Wissenschaftlern aus Heidelberg und Wien zur Bildung neuer Polypen in der asexuellen Vermehrung von Hydra, deren Ergebnisse jetzt in der Zeitschrift „Nature“ veröffentlicht wurden. Beteiligt waren an dem Projekt eine Arbeitsgruppe um Prof. Dr. Thomas Holstein und Privatdozent Dr. Suat Özbek am Centre for Organismal Studies (COS) der Universität Heidelberg sowie Dr. Heiko Schmidt vom Center for Integrative Bioinformatics Vienna (CIBIV) der Max F. Perutz Laboratories (MFPL). Die Heidelberger Forscher haben den Vermehrungsprozess, bei dem seitlich am Muttertier Knospen neuer Tochterpolypen entstehen, molekular aufgeklärt: Sie fanden heraus, dass dabei ein Signalweg eingesetzt wird, der bei höheren Tieren die Links-Rechts-Asymmetrie unserer Organe einleitet. Die Vorgänge, die sich dabei auf molekularer Ebene abspielen, sind frappant ähnlich zu denen bei der Entstehung der Körperachsen in frühen Embryonen von Wirbeltieren.

    Eine der zentralen Fragen der Biologie ist: Was macht den Grundtypus des tierischen Bauplans aus und wie haben sich daraus alle komplexeren Formen entwickelt, einschließlich der des Menschen? Im einfachsten Fall lässt sich dieser Körperbauplan durch die drei Raumachsen beschreiben, so wie sie in einem kartesischen Koordinatensystem definiert sind. Bei diesen drei Körperachsen – sie entsprechen den aus der Geometrie bekannten X-, Y- und Z-Achsen – handelt es sich um die Anterior-Posterior-Achse (AP), welche die Position eines vorderen Mundes und hinteren Afters bestimmt, die Dorsal-Ventral-Achse (DV), mit dem bei Wirbeltieren oben gelegenen Rücken und unteren Bauch, sowie um die Links-Rechts-Achse (LR) mit der spiegelbildlich symmetrischen Anlage unserer Extremitäten und der Links-Rechts-Asymmetrie der Organe.

    Diese drei Körperachsen werden früh in der Embryonalentwicklung festgelegt. Wenn aus einer befruchteten und dann sich fortlaufend teilenden Eizelle zunächst ein kugelförmiger „Haufen“ undifferenzierter Zellen entsteht, wird beim frühen Embryo zuerst jene Position bestimmt, an der die erste Körperöffnung entsteht, welche zugleich die AP-Achse definiert. „Dieser Prozess lässt sich geometrisch als Symmetriebruch beschreiben, und ihm folgen weitere Symmetriebrüche, die zur Festlegung der zwei anderen Achsen führen, der DV- und LR-Achse“, erläutert Prof. Holstein vom Center for Organismal Studies (COS). Die genetische Basis für jede dieser Körperachsen wurde in der Embryonalentwicklung des Menschen, anderer Wirbeltiere, aber auch von Insekten und Würmern bereits identifiziert. Es sind evolutiv hoch konservierte molekulare Signalsysteme, die als „molekulare Vektoren“ jeweils eine Körperachse definieren und die Entstehung verschiedener Zelltypen steuern. Viele dieser sogenannten Entwicklungsgene spielen nicht zuletzt auch bei der Krebsentstehung eine große Rolle.

    Bei ihren molekularen Analysen von Stammzellen und Wnt-Proteinen beim Süßwasserpolypen Hydra, der nur eine einzelne klar definierte Körperachse mit einer Körperöffnung besitzt, haben die Forscher nun den sogenannten Nodal-Signalweg in diesem evolutionär ursprünglichen System identifiziert. „Bisher war dieser Signalweg nur aus bilateral symmetrischen Tieren bekannt, wo er an der Etablierung eines Signalzentrums der frühen Embryonalentwicklung und der Links-Rechts-Asymmetrie beteiligt ist. Mit verschiedenen pharmakologischen und genetischen Experimenten konnte unsere Gruppe nun zeigen, dass auch in Hydra ein Nodal-artiges Gen zusammen mit zentralen Ziel-Genen des aktivierten Nodal-Signalwegs an der asymmetrischen Anlage der Knospen von Hydra beteiligt ist“, erklärt Dr. Hiroshi Watanabe aus der Gruppe von Prof. Holstein. Die Knospen lösen sich bei Hydra vom Muttertier, bei den ebenfalls zu den Nesseltieren gehörenden Korallen bleiben sie mit dem Muttertier verbunden und bilden komplex verzweigte Kolonien. Der Nodal-Signalweg wird von Komponenten des „primären“ Signalwegs aktiviert, der für die Anterior-Posterior-Achse verantwortlich ist (Wnt-Signalweg). Der Nodal-Signalweg steuert bei bilateralsymmetrischen Tieren (z.B. Wirbeltieren) die Etablierung der Links-Rechts-Körperachse.

    Die Arbeiten der Heidelberger Forscher zeigen zum ersten Mal die Existenz und Beteiligung des Nodal-Signalwegs bei der Achseninduktion in einem „radiär“ symmetrischen Organismus. „Wir gehen davon aus, dass dies ein Startpunkt in der Evolution für die Links-Rechts-Achsenbildung in den bilateral symmetrischen Tieren war. Zu identifizieren, auf welche Weise sich daraus evolutionär der komplexe Bauplan der Bilateria entwickelt hat, eröffnet weitere spannende Forschungsfragen“, erklärt Prof. Holstein. Die Arbeiten zeigen aber schon jetzt, wie ähnlich auf molekularer Ebene die Kernprozesse in der Embryonalentwicklung zwischen den einfachen Nesseltieren und den Wirbeltieren einschließlich des Menschen sind.

    Originalveröffentlichung:
    Hiroshi Watanabe, Heiko A. Schmidt, Anne Kuhn, Stefanie K. Höger, Yigit Kocagöz, Nico Laumann-Lipp, Suat Özbek & Thomas W. Holstein: „Nodal signalling determines biradial asymmetry in Hydra“. Nature online (24 August 2014), doi:10.1038/nature13666

    Kontakt:
    Prof. Dr. Thomas Holstein
    Centre for Organismal Studies
    Telefon (06221) 54-5679
    thomas.holstein@cos.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle
    Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).