idw - Informationsdienst
Wissenschaft
Wenn Brücken, Staumauern und andere Bauwerke aus Beton nach einigen Jahrzehnten von dunklen Rissen durchzogen sind, dann ist AAR die Ursache: die Alkali-Aggregat-Reaktion. Umgangssprachlich auch Betonkrankheit oder gar Betonkrebs genannt, handelt es sich um eine chemische Reaktion zwischen im Beton vorhandenen Stoffen und von aussen eindringender Feuchtigkeit. Wie das Material, das im Zuge der AAR entsteht, auf der Ebene einzelner Atome aufgebaut ist, haben jetzt Forschende des Paul Scherrer Instituts PSI und der Empa entschlüsselt – und dabei eine bislang unbekannte kristalline Anordnung der Atome entdeckt.
Eine zersetzende Alterserscheinung von Beton haben Forschende am Paul Scherrer Institut PSI gemeinsam mit Kollegen des Materialforschungsinstituts Empa untersucht: Die sogenannte Alkali-Aggregat-Reaktion (AAR). Im Zuge der AAR entsteht ein Material, das mehr Raum einnimmt als der ursprüngliche Beton und letzteren im Laufe von Jahrzehnten langsam von innen heraus sprengt.
Den genauen Aufbau dieses Materials haben die Forschenden nun ergründet. Sie konnten zeigen, dass hier die Atome sehr regelmässig angeordnet sind, es sich also um einen Kristall handelt. Auch den Aufbau dieses Kristalls haben sie entschlüsselt: Es ist eine sogenannte Silizium-Schichtenstruktur, die in dieser Form noch nie zuvor beobachtet wurde. Diese Erkenntnis verdanken die Forschenden Messungen an der Synchrotron Lichtquelle Schweiz SLS am PSI. Die Forschungsergebnisse wiederum könnten helfen, zukünftig langlebigeren Beton zu entwickeln.
Weltweites Problem
Die AAR ist eine chemische Reaktion, die weltweit Betonbauten unter freiem Himmel betrifft. Sie geschieht, wenn Beton Wasser beziehungsweise Feuchtigkeit ausgesetzt ist. Beispielsweise sind in der Schweiz zahlreiche Brücken und bis zu 20 Prozent der Staumauern von AAR betroffen.
Bei der AAR sind die Grundzutaten des Betons selbst das Problem: Zement – der Hauptbestandteil von Beton – enthält Alkalimetalle wie Natrium und Kalium. In den Beton eindringende Feuchtigkeit – beispielsweise durch Regen – wird dadurch alkalisch.
Die zweite Hauptzutat von Beton sind Sand und Kies. Diese wiederum bestehen aus mineralischen Gesteinen, beispielsweise Quarz oder Feldspat. Chemisch betrachtet handelt es sich bei diesen Mineralien um sogenannte Silikate.
Mit diesen Silikaten reagiert nun das alkalische Wasser und führt zur Bildung von sogenanntem Alkali-Kalzium-Silikat-Hydrat. Dieses wiederum kann Feuchtigkeit aufnehmen. Dadurch allerdings dehnt es sich aus und sprengt mit der Zeit den Beton von innen. Dieser gesamte Prozess ist die Alkali-Aggregat-Reaktion AAR.
Da die AAR sehr langsam geschieht, entstehen zunächst winzige Risse, die mit blossem Auge nicht sichtbar sind. Im Laufe von drei, vier Jahrzehnten wachsen die Risse jedoch auf beträchtliche Breite und bedrohen schliesslich die Dauerhaftigkeit des gesamten Beton-Bauwerks.
"Die meisten Bauwerke, die heute an AAR leiden, wurden zwischen den 1960er und 1980er Jahren erbaut", erklärt Erich Wieland, Gruppenleiter Zementsysteme am PSI. "Auf das Problem der AAR ist die Forschungsgemeinde in Europa erst in den 70er Jahren aufmerksam geworden."
Ein neuer Kristall
Auch wenn die chemischen Vorgänge der AAR schon lange bekannt sind – die physikalische Struktur des im Zuge der AAR entstehenden Alkali-Kalzium-Silikat-Hydrats hatte bisher noch niemand identifiziert. Diese Wissenslücke konnten die Forschenden des PSI und der Empa nun schliessen.
Dafür untersuchten sie die Substanz einer 1969 erbauten Schweizer Brücke, die stark von AAR betroffen ist. Forschende der Empa hatten dieser Brücke eine Materialprobe entnommen. Ein schmales Stück davon wurde so lange heruntergeschliffen, bis eine hauchdünne Probe von nur 0,02 Millimeter Dicke übrig blieb. Diese Probe liess sich an der Synchrotron Lichtquelle Schweiz SLS mit einem extrem schmalen Röntgenstrahl durchleuchten, der 50 Mal dünner ist als ein menschliches Haar. Mittels sogenannter Diffraktionsmessungen und einer aufwendigen Datenanalyse konnten die PSI-Forschenden schliesslich die Kristallstruktur des Materials punktgenau bestimmen.
Es zeigte sich, dass das Alkali-Kalzium-Silikat-Hydrat eine bisher nie dokumentierte Silizium-Schichten-Kristallstruktur aufweist. "Normalerweise darf derjenige, der einen noch nicht katalogisierten Kristall entdeckt, diesem einen Namen geben", erklärt Rainer Dähn, Erstautor der Studie. "Allerdings muss es sich um einen in der Natur gefundenen Kristall handeln. Daher sind wir in diesem Fall nicht zu der Ehre gekommen", so der Forscher schmunzelnd.
Die Idee zu der aktuellen Studie hatte Mitautor Andreas Leemann, Gruppenleiter Betontechnologie an der Empa. Das Wissen über die Untersuchungsmethode per Röntgenstrahlen lieferten die Forschenden des PSI.
"Es gibt prinzipiell die Möglichkeit, dem Beton organische Stoffe beizumengen, die den Spannungsaufbau reduzieren können", erklärt Materialwissenschaftler Leemann. "Unsere neuen Ergebnisse stellen diese Überlegungen auf ein wissenschaftliches Fundament und könnten die Basis für neue Materialentwicklungen sein."
Text: Paul Scherrer Institut/Laura Hennemann
-----------------------------------------------------------------------------
Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.
-----------------------------------------------------------------------------
Kontakt / Ansprechpartner
Dr. Rainer Dähn, Forschungsgruppe für Ton-Sorptionsmechanismen, Paul Scherrer Institut,
Telefon: +41 56 310 21 75, E-Mail: rainer.daehn@psi.ch [Deutsch, Englisch]
Dr. Erich Wieland, Forschungsgruppe für Zementsysteme, Paul Scherrer Institut,
Telefon: +41 56 310 22 91, E-Mail: erich.wieland@psi.ch [Deutsch, Englisch]
Dr. Andreas Leemann, Abteilung Beton und Bauchemie, Empa,
Telefon: +41 58 765 44 89, E-Mail: andreas.leemann@empa.ch [Deutsch, Englisch]
Originalveröffentlichung
Application of micro X-ray diffraction to investigate the reaction products formed by the alkali-silica reaction in concrete structures
R. Dähn, A. Arakcheeva, Ph. Schaub, P. Pattison, G. Chapuis, D. Grolimund, E. Wieland and A. Leemann
Cement and Concrete Research 14. Oktober 2015 (online)
DOI: 10.1016/j.cemconres.2015.07.012 http://www.sciencedirect.com/science/article/pii/S0008884615002094
http://www.psi.ch/media/struktur-der-betonkrankheit-entschluesselt Darstellung der Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen.
Die Forscher Rainer Dähn und Erich Wieland haben an der Synchrotron Lichtquelle Schweiz SLS des PSI ...
Foto: Paul Scherrer Institut/Markus Fischer
None
Die sogenannte Betonkrankheit: Nahaufnahme von Rissen in Beton, die aufgrund der Alkali-Aggregat-Rea ...
Foto: Empa/Andreas Leemann
None
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Bauwesen / Architektur, Chemie, Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).