idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.05.2016 11:42

Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Katharina Hien Unternehmensstrategie und Kommunikation
Fraunhofer-Institut für Werkstoffmechanik IWM

    Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

    Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem Thorium-Mangan-Kristallstrukturtyp basiert. »Die verwendete Neodym-Eisen-Stickstoff-Verbindung hat bessere magnetische Eigenschaften als der derzeitige Supermagnet aus Neodym, Eisen und Bor«, erläutert Georg Krugel, allerdings sei das Material noch nicht stabil genug. Bislang lässt es sich nur in dünnen Schichten herstellen. Ziel des Projekts der Gruppe »Materialmodellierung« war die Identifizierung eines neuen Dauermagneten mit den gleichen oder besseren magnetischen Eigenschaften hinsichtlich Stärke und Richtungsstabilität, der aber auch die benötigte Materialstabilität aufweist. Mit dem neuen HTS-Verfahren wurden nun in der Kristallstruktur unterschiedliche Atome systematisch durchvariiert. Zunächst ersetzten die Forscher die Neodym-Atome durch andere Seltene Erden, beispielsweise Cer, welches erheblich kostengünstiger ist. Die Eisen-Atome variierten sie dann mit Übergangsmetallen wie Kobalt, Nickel und Titan, aber auch mit weiteren Elementen wie Silizium. Das HTS umfasste auf diese Weise 1280 Varianten, die die Forscher hinsichtlich ihrer Eigenschaften analysierten.

    Konzentration auf Materialstabilität, Stärke und Richtungsstabilität der Magnetisierung

    »Bei der Analyse der Materialvarianten haben wir uns auf drei Eigenschaften konzentriert, die für die Verwendung der Dauermagneten von hoher Bedeutung sind«, erklärt Krugel. Die Forscher nahmen zunächst die Stabilität des Materials in den Blick, die sich über die Bildungsenergie abschätzen lässt. Zweiter wichtiger Aspekt ist das maximal erreichbare Energieprodukt, welches eine Aussage über die Stärke des Magneten zulässt. Sehr wichtig für den vorgesehenen Verwendungszweck ist auch die Anisotropie-Energie, das Maß für die Richtungsstabilität der Magnetisierung. Auf diese Weise konnten die Forscher unter den 1280 Varianten zwölf besonders vielversprechende Kandidaten identifizieren.

    Validierung anhand experimentell bereits hergestellter Magnetmaterialien

    Entscheidend ist natürlich die Frage, ob die berechneten Eigenschaften der im Computer erzeugten Materialvarianten auch der Realität standhalten. Deshalb validierten die Forscher diese zusätzlich anhand bereits hergestellter Dauermagneten. Die Ergebnisse bestätigten die hohe Vorhersagekraft der berechneten magnetischen Eigenschaften der HTS-Kandidaten.

    Generelle Trends

    Neben der Identifizierung vielversprechender Materialansätze für neue Dauermagnete konnten die Forscher mit ihrer Arbeit wichtige generelle Trends feststellen. »Es hat sich gezeigt, dass Cer und Neodym insgesamt besser als Samarium geeignet sind«, so Krugel. Vor allem Cer weist eine sehr hohe Anisotropie auf. Hinsichtlich der Übergangsmetalle konnten die Forscher vor allem die Eignung von Titan besser einschätzbar machen: »Das Übergangsmetall reduziert zwar die Stärke des Magneten, erhöht seine Richtungsstabilität aber erheblich«, resümiert Krugel. Auch für zusätzlich in die Kristallstruktur eingebaute Atome können nun gesicherte Aussagen gemacht werden: Stickstoff oder Kohlenstoff eignen sich besser als das im aktuellen Supermagneten verwendete Bor.
    Nach den Vorhersagen des neuen HTS-Ansatzes könnten nun neue Magnete experimentell hergestellt werden. Für die Industrie ist dies eine Möglichkeit, mithilfe computergestützter Voraussagen für bestimmte Eigenschaften benötigte Werkstoffe zu identifizieren und zu optimieren.

    Publikation:
    Körner, W. et al. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content. Sci. Rep. 6, 24686; doi: 10.1038/srep24686 (2016).


    Weitere Informationen:

    http://www.nature.com/articles/srep24686 - Link zur Publikation
    http://www.iwm.fraunhofer.de/geschaeftsfelder/materialdesign/materialmodellierun... - Link zur Gruppe Materialmodellierung


    Bilder

    Links: Die Thorium-Mangan-Kristallstruktur (ThMn12) mit Neodym-Atomen (blaue Kugeln) hat bessere magnetische Eigenschaften als der Supermagnet, ist jedoch unstabil; rechts: neue, stabilere Struktur.
    Links: Die Thorium-Mangan-Kristallstruktur (ThMn12) mit Neodym-Atomen (blaue Kugeln) hat bessere mag ...
    Quelle: © Fraunhofer-Institut für Werkstoffmechanik IWM


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Elektrotechnik, Energie, Verkehr / Transport, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).