idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.09.2016 14:39

Winzige Defekte stören die Informationsübertragung zwischen organischen Magneten und Metalloxiden

Dr. Karl Guido Rijkhoek Hochschulkommunikation
Eberhard Karls Universität Tübingen

    Tübinger Forscher untersuchen eine komplexe Schnittstelle, die für neue Anwendungen in der Elektronik benötigt wird

    Magnete aus organischen Materialien haben gegenüber klassischen Magneten, die aus Metallen oder Legierungen der sogenannten Seltenerdmetalle bestehen, einige Vorteile: Sie sind chemisch flexibel, preisgünstig herzustellen und lassen sich gut für verschiedene Zwecke an unterschiedliche Designs anpassen. In der Praxis wollen Wissenschaftler beide Arten von Magneten für Anwendungen in der Elektronik benutzen – in sogenannten Spintronik-Elementen, bei denen die Informationen nicht über Ladungen, sondern über den Spin der Moleküle transportiert werden. Der Spin ist ein Eigendrehimpuls, der Teilchen als charakteristische Eigenschaft innewohnt. Reza Kakavandi, Professor Thomas Chassé und Dr. Benedetta Casu vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen haben eine solche magnetische Schnittstelle zwischen Rutilkristallen, das heißt Oxiden des Metalls Titan, und einem rein organischen Magneten untersucht. Sie entdeckten, dass der Übergang an der Grenzfläche äußerst empfindlich auf minimale Defekte in der Oberfläche der Materialien reagiert. Die Ergebnisse wurden im Fachjournal Nano Research veröffentlicht.

    Rein organische Radikale bestehen aus leichten Elementen wie Kohlenstoff, Stickstoff und Sauerstoff und tragen mindestens ein ungepaartes Elektron, das ein dauerhaftes magnetisches Moment erzeugt. „Sie sind für eine ganze Reihe von Anwendungen interessant“, sagt Benedetta Casu, „sie werden inzwischen für Speicherelemente, Batterien, Sensoren und für Anwendungen in der Biomedizin genutzt. Grundsätzlich ließen sie sich auch für die Konstruktion eines Quantencomputers einsetzen.“ In ihrer Studie untersuchten die Tübinger Wissenschaftler die Schnittstelle zwischen einem Einzelkristall des Minerals Rutil und einem organischen Radikal mithilfe eines hoch aufgelösten Röntgenspektroskopie-Verfahrens und theoretischen Berechnungen, die von Dr. Arrigo Calzolari vom Institut für Nanowissenschaften in Modena (CNR-NANO) durchgeführt wurden. Die Wissenschaftler bezeichnen die Verbindung aus klassischem und organischem Magneten auch als Spinterface – zusammengesetzt aus „Spin“ und „Interface“, dem englischen Begriff für Schnittstelle.

    „Im Experiment wurden die organischen Radikale physikalisch festgehalten, das magnetische Moment wurde zwischen den unterschiedlichen Materialien erhalten“, sagt Benedetta Casu. Das habe gut funktioniert. Allerdings habe sich die Situation völlig verkehrt, wenn der Rutil an der Übertragungsstelle einen winzigen Defekt gehabt habe, eine nicht hundertprozentig regelmäßige Anordnung der Oberfläche. „In diesem Fall wurde das organische Radikal von der reaktionsfreudigen Defektstelle chemisch gebunden, sodass sein magnetisches Moment ausgelöscht wurde“, erläutert die Wissenschaftlerin.

    Der Ansatz mit der Kombination aus Röntgenspektroskopie und theoretischen Berechnungen habe sich als besonders geeignet erwiesen, um die Mechanismen an der komplexen Schnittstelle zu verstehen. Man müsse sowohl die Ladungsverhältnisse als auch das Spinverhalten beschreiben. Zum ersten Mal sei klar geworden, welche wichtigen Einflüsse von den Oberflächendefekten an einem solchen Spinterface ausgehen. „Das ist ein wichtiges Ergebnis von allgemeiner Gültigkeit von der Chemie bis zur Physik sowie für die Materialwissenschaften“, sagt die Wissenschaftlerin.

    Originalpublikation:
    Reza Kakavandi, Arrigo Calzolari, Yulia B. Borozdina, Prince Ravat, Thomas Chassé, Martin Baumgarten, and M. Benedetta Casu: Unraveling the mark of surface defects on a spinterface: The nitronyl nitroxide/TiO2(110) interface. Nano Research, DOI 10.1007/s12274-016-1228-1

    Kontakt:
    PD Dr. Benedetta Casu
    Universität Tübingen
    Institut für Physikalische und Theoretische Chemie
    Telefon +49 7071 29-76252
    benedetta.casu[at]uni-tuebingen.de


    Bilder

    Ein organisches Radikal näher sich dem Rutilkristallgitter (rot) – hier mit einer idealen Oberfläche ohne Defekte
    Ein organisches Radikal näher sich dem Rutilkristallgitter (rot) – hier mit einer idealen Oberfläche ...
    Quelle: Abbildung: Benedetta Casu und Arrigo Calzolari


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).