idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.10.2016 12:10

Wie Lösungsmittelmoleküle bei Reaktionen kooperieren

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Auf den ersten Blick scheinbar unbeteiligte Moleküle aus der Lösungsmittelumgebung können essenziell für chemische Reaktionen sein. Das haben Forscher anhand der Ether-Bildung in einem Lösungsmittelgemisch gezeigt. Sie klärten die zugrunde liegenden Mechanismen mit modernsten spektroskopischen und theoretischen Verfahren im Detail auf. Das Fazit: Auch solche Lösungsmittelmoleküle, die an der Reaktion nicht direkt teilnehmen, sind für den Reaktionsverlauf essenziell und können die Reaktionspartner maßgeblich beeinflussen. Die Forscher berichten in „Nature Communications“.

    Auf den ersten Blick scheinbar unbeteiligte Moleküle aus der Lösungsmittelumgebung können essenziell für chemische Reaktionen sein. Das haben Forscher anhand der Ether-Bildung in einem Lösungsmittelgemisch gezeigt. Sie klärten die zugrunde liegenden Mechanismen mit modernsten spektroskopischen und theoretischen Verfahren im Detail auf. Das Fazit: Auch solche Lösungsmittelmoleküle, die an der Reaktion nicht direkt teilnehmen, sind für den Reaktionsverlauf essenziell und können die Reaktionspartner maßgeblich beeinflussen.

    Die Ergebnisse beschreibt ein Team von experimentell und theoretisch arbeitenden Chemikern der Ruhr-Universität Bochum, der Universität Würzburg und des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr in der Zeitschrift „Nature Communications“.

    Licht schaltet Reaktionsfreude an

    Aus einer reaktionsträgen chemischen Vorläuferverbindung kann durch einen Lichtblitz ein hochreaktives Molekül entstehen, das selbst mit umgebenden Lösungsmittelmolekülen reagiert. Das kann in weniger als einer Milliardstel Sekunde geschehen. Ein Beispiel ist das Molekül Diphenylcarben: Es reagiert schnell zu einem Ether, wenn es im Lösungsmittel Methanol vorliegt. Mit dem Lösungsmittel Acetonitril hingegen ist diese Reaktion nicht möglich.

    Die Forscher um Dr. Elsa Sanchez-Garcia und Prof. Dr. Patrick Nürnberger untersuchten, was passiert, wenn Diphenylcarben in einem Lösungsmittelgemisch aus Methanol und Acetonitril vorliegt. Die Bildung des Ethers geht langsamer vonstatten als in reinem Methanol; auch die Ausbeute ist geringer. Warum zeigten die Forscher in der aktuellen Studie.

    Zweites Lösungsmittelmolekül entscheidend

    Eine potenzielle Erklärung wäre, dass Diphenylcarben in dem Lösungsmittelgemisch länger warten muss, bis ein Methanolmolekül in der Nähe ist, um mit ihm zu reagieren. „Die Reaktion läuft aber nicht so simpel, wie auf den ersten Blick angenommen“, sagt Patrick Nürnberger vom Bochumer Lehrstuhl für Physikalische Chemie II. „Es sind mehrere Mechanismen am Werk.“

    Obwohl für die Bildung des finalen Ethermoleküls formal nur ein einziges Methanolmolekül benötigt wird, erfolgt die Reaktion erst dann, wenn ein zweites Methanolmolekül zugegen ist. Das ergab eine Kombination von ultraschnellen spektroskopischen Experimenten im Femtosekundenbereich und molekulardynamischen Computersimulationen.

    Nicht nur unbeteiligte Zuschauer

    Die Chemiker beschreiben im Detail die Reaktionsmechanismen für zwei Szenarien: In einem trifft Diphenylcarben zunächst auf ein einzelnes Methanolmolekül, und später kommt ein weiteres hinzu. Im zweiten Szenario trifft Diphenylcarben direkt auf einen Verbund von Methanolmolekülen.

    In beiden Fällen zeigt sich, dass ein einzelnes Methanolmolekül für das Zustandekommen der Reaktion nicht ausreicht. „Die anderen Methanolmoleküle sind daher nicht nur unbeteiligte Zuschauer, sondern Gehilfen bei der Reaktion“, fasst Nürnberger zusammen. „Die Ergebnisse sind ein wichtiger Baustein, um die Wechselwirkung von reaktiven Substanzen mit der Lösungsmittelumgebung zu verstehen.“

    Förderung

    Die Forschungsarbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069), des Sonderforschungsbereichs SFB 1093 und des Emmy-Noether-Programms. Weitere Förderung kam von der Boehringer-Ingelheim-Stiftung (Plus-3 Programm).

    Originalveröffentlichung

    Johannes Knorr, Pandian Sokkar, Sebastian Schott, Paolo Costa, Walter Thiel, Wolfram Sander, Elsa Sanchez-Garcia, Patrick Nuernberger: Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures, in: Nature Communications, 2016, DOI: 10.1038/ncomms12968

    Pressekontakt

    Prof. Dr. Patrick Nürnberger
    Physikalische Chemie II
    Fakultät für Chemie und Biochemie
    Ruhr-Universität Bochum
    Tel.: 0234 32 29946
    E-Mail: patrick.nuernberger@rub.de

    Angeklickt

    Exzellenzcluster Resolv
    http://www.ruhr-uni-bochum.de/solvation/


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).