idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.01.2017 19:12

Kieler Forschende können intelligentes Haftmaterial mit Licht fernsteuern

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Haftmechanismen aus der Natur, wie Geckos und andere Tiere sie nutzen, wenn sie kopfüber an der Decke laufen, haben viele Vorteile: So sind sie beständig haftstark und das ohne Klebstoff oder Rückstände. Wie diese Mechanismen künstlich nachgebaut werden können, erforschen Wissenschaftlerinnen und Wissenschaftler an der Christian-Albrechts-Universität zu Kiel (CAU). Einem interdisziplinären Forschungsteam aus der Materialwissenschaft, Chemie und Biologie ist es jetzt gelungen, ein bioinspiriertes Haftmaterial zu entwickeln, das über UV-Licht ferngesteuert werden kann. So ist es möglich, Objekte präzise im Mikrobereich zu transportieren.

    Die Erkenntnisse könnten interessant sein für Anwendungen in der Robotik, Industrie und Medizintechnik. Die Ergebnisse des Kieler Forschungsteams wurden in der aktuellen Ausgabe der Fachzeitschrift Science Robotics veröffentlicht.

    In der Natur sorgen mechanische Stimuli wie Muskelbewegungen dafür, dass Tierbeine sich an Oberflächen anhaften und wieder lösen. Die Kieler Wissenschaftlerinnen und Wissenschaftler nutzen stattdessen Licht, um ihre künstlichen Haftmechanismus zu kontrollieren, die sie nach Vorbildern aus der Natur gebaut haben. „Licht hat den Vorteil, dass es sich sehr präzise einsetzen lässt. Es ist reversibel, kann also an- und ausgeschaltet werden und das in kürzester Zeit“, erläutert Emre Kizilkan aus der Arbeitsgruppe Funktionelle Morphologie und Biomechanik um Professor Stanislav Gorb vom Zoologischen Institut.

    Die Wissenschaftlerinnen und Wissenschaftler entwickelten zunächst ein elastisches, poröses Material (LCE, Liquid crystal elastomer), das sich aufgrund seiner speziellen Molekülstruktur biegt, sobald es mit UV-Licht bestrahlt wird. Dabei fiel ihnen auf: Je poröser das Material, desto mehr biegt es sich. Das machten sich die Forschenden zu nutze. „Poröse Materialen lassen sich aufgrund ihrer Struktur sehr leicht mit anderen verbinden“, erklärt Kizilkan. „Also testeten wir, was passiert, wenn wir das elastische Material, der sehr gut auf Licht reagiert, mit einem bioinspirierten Material kombinieren, das sehr gut klebt.“

    Das Ergebnis ist ein intelligentes, haftendes Kompositmaterial, das über Licht kontrolliert werden kann. Die Oberfläche besteht aus einer Mikrostruktur aus pilzkopfförmigen Haftelementen, wie sie sich auch an den Füßen einiger Käferarten befindet. Flache oder dreidimensionale Elemente wie kleine Objektträger oder Kugeln aus Glas haften daran an und können damit angehoben werden. Wird das Kompositmaterial mit UV-Licht bestrahlt, biegt es sich. Durch das Krümmen der Oberfläche lösen sich mehr und mehr Haftelemente vom Objekt bis es schließlich wieder abgesetzt werden kann.

    „Wir konnten zeigen, dass wir mit unserem neuen Material in der Lage sind, Objekte zu transportieren. Außerdem lässt sich der Transport mit Licht sehr präzise steuern und zwar auf Mikroebene“, erklärt Kizilkan. Gorb ergänzt: „Wir nutzen das Licht quasi als Fernsteuerung. Außerdem hinterlässt unser bioinspiriertes Klebematerial keine Rückstände auf den Objekten.“ Die Entdeckung der Forschungsgruppe ist deshalb besonders interessant für den Bau von empfindlichen Sensoren oder winzig kleinen Computerchips. Sie müssen geschützt vor äußeren Einflüssen und Verunreinigungen hergestellt werden, wie zum Beispiel im Reinraum der CAU. „Langfristig würden wir das neue Material gerne nutzen, um Mikroroboter zu entwickeln, die sich durch Licht gesteuert fortbewegen und an Wänden hochklettern können“, gibt Professor Gorb einen Ausblick.

    Das Forschungsprojekt ist Teil des Sonderforschungsbereich 677 „Funktion durch Schalten“ an der CAU, in dem 100 Wissenschaftlerinnen und Wissenschaftler aus Chemie, Physik, Materialwissenschaften, Pharmazie und Medizin fächerübergreifend daran arbeiten, schaltbare molekulare Maschinen zu entwickeln, die zum Beispiel durch Licht gesteuert werden können.

    Originalpublikationen
    Science Robotics: E. Kizilkan, J. Strueben, A. Staubitz, S. N. Gorb, Bioinspired photocontrollable microstructured transport device. Sci. Robot. 2, eaak9454 (2017). http://robotics.sciencemag.org/content/2/2/eaak9454; DOI: 10.1126/scirobotics.aak9454

    Royal Society Open Science: E. Kizilkan, J. Strueben, X. Jin, C. F. Schaber, R. Adelung, A. Staubitz, S. N. Gorb, Influence of the porosity on the photoresponse of a liquid crystal elastomer. R. Soc. Open Sci. 3, 150700 (2016). DOI:10.1098/rsos.150700

    Fotos stehen zum Download bereit:
    http://www.uni-kiel.de/download/pm/2017/2017-016-1.jpg
    Bildunterschrift: Angestrahlt mit UV-Licht biegt sich das intelligente Material mit der haftenden Oberfläche. So kann es flache und dreidimensionale Objekte (hier eine Glaskugel mit einem Durchmesser von einem Millimeter) anheben, transportieren und wieder absetzen.
    Foto/Copyright: Emre Kizilkan

    http://www.uni-kiel.de/download/pm/2017/2017-016-2.jpg
    Bildunterschrift: Das neue Kompositmaterial besteht aus zwei Stoffen: Einem klebenden Material (blau) und einem elastischen Kunststoff LCE (Liquid crystal elastomer) (gelb). LCE ist aus Azobenzolmolekülen aufgebaut, die sich – und damit das ganze Material – biegen, sobald sie mit UV-Licht bestrahlt werden. Durch die Krümmung lösen sich die Haftelemente vom Objekt.
    Grafik/Copyright: Emre Kizilkan und Jan Strüben

    http://www.uni-kiel.de/download/pm/2017/2017-016-3.jpg
    Bildunterschrift: Das zweite, klebende Material ist ein Polymer, das nach Vorbildern aus der Natur entwickelt wurde. Seine Oberfläche besteht aus einer pilzkopfförmigen Mikrostruktur, die unter dem Rasterelektronenmikroskop sichtbar wird. Sie ist starkklebenden, reversiblen Haftelementen nachempfunden, wie sie bei einigen Käferarten zu finden sind.
    Foto/Copyright: Emre Kizilkan

    http://www.uni-kiel.de/download/pm/2017/2017-016-4.jpg
    Bildunterschrift: Mikrotransporte präzise fernsteuern mit Licht: Auf einen Glasträger gelegt haftet das neue Kompositmaterial (BIPMTD) dort an (i). So kann der Glasträger angehoben werden (ii). Wird UV-Licht mit einer Wellenlänge von 365 Nanometern angeschaltet (iii), löst sich der Glasträger wieder und kann abgesetzt werden (iv).
    Foto/Copyright: Emre Kizilkan

    http://www.uni-kiel.de/download/pm/2017/2017-016-5.jpg
    Bildunterschrift: An einem Versuchsaufbau zur Kraftmessung testet Materialwissenschaftler Emre Kizilkan, wie stark das Kompositmaterial an Objekten haftet, wenn es mit UV-Licht bestrahlt wird.
    Foto/Copyright: CAU/Julia Siekmann

    Kontakt
    Professor Stanislav N. Gorb
    Zoologisches Institut der Universität Kiel
    Telefon: 0431/880-4513
    E-Mail: sgorb@zoologie.uni-kiel.de
    Web: http://www.uni-kiel.de/zoologie/gorb/topics.html

    Emre Kizilkan
    Telefon: 0431/880-4859
    E-Mail: ekizilkan@zoologie.uni-kiel.de


    Weitere Informationen:

    http://robotics.sciencemag.org/content/robotics/suppl/2017/01/10/2.2.eaak9454.DC... Das Video zeigt, wie das Kompositmaterial eine Glaskugel von 1 Millimeter Durchmesser durch die Bestrahlung mit UV-Licht aufnimmt, transportiert und wieder absetzt. Copyright: Emre Kizilkan


    Bilder

    Angestrahlt mit UV-Licht kann das intelligente Haftmaterial flache und dreidimensionale Objekte (hier eine Glaskugel mit einem Durchmesser von einem Millimeter) anheben und transportieren.
    Angestrahlt mit UV-Licht kann das intelligente Haftmaterial flache und dreidimensionale Objekte (hie ...
    Quelle: Emre Kizilkan

    Das neue Kompositmaterial besteht aus zwei Stoffen: Einem klebenden Material (blau) und einem elastischen Kunststoff LCE (Liquid crystal elastomer) (gelb).
    Das neue Kompositmaterial besteht aus zwei Stoffen: Einem klebenden Material (blau) und einem elasti ...
    Quelle: Emre Kizilkan und Jan Strüben


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Biologie, Maschinenbau, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).