idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.04.2017 14:43

Quantenphysikalisches Modellsystem

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Ein Modellsystem, das ein besseres Verständnis der Vorgänge in einem quantenphysikalischen Experiment mit ultrakalten Atomen ermöglicht, haben zwei Wissenschaftler der Universität Heidelberg entwickelt. Mithilfe computergestützter Methoden konnten Prof. Dr. Sandro Wimberger und David Fischer vom Institut für Theoretische Physik dabei Gesetzmäßigkeiten entdecken, die auf universelle Eigenschaften dieses Systems hindeuten. Veröffentlicht wurden die Forschungsergebnisse in der Fachzeitschrift „Annalen der Physik“.

    Pressemitteilung
    Heidelberg, 6. April 2017

    Quantenphysikalisches Modellsystem
    Heidelberger Physiker reproduzieren mithilfe computergestützter Methoden ein Experiment mit ultrakalten Atomen

    Ein Modellsystem, das ein besseres Verständnis der Vorgänge in einem quantenphysikalischen Experiment mit ultrakalten Atomen ermöglicht, haben zwei Wissenschaftler der Universität Heidelberg entwickelt. Mithilfe computergestützter Methoden konnten Prof. Dr. Sandro Wimberger und David Fischer vom Institut für Theoretische Physik dabei Gesetzmäßigkeiten entdecken, die auf universelle Eigenschaften dieses Systems hindeuten. Veröffentlicht wurden die Forschungsergebnisse in der Fachzeitschrift „Annalen der Physik“.

    Kleine Teilchen folgen unter bestimmten Voraussetzungen völlig anderen physikalischen Gesetzen, als wir sie aus dem Alltag gewohnt sind. „Die Beobachtung solcher quantenphysikalischer Phänomene gestaltet sich jedoch mitunter schwierig und erfordert es, mit kleinen und isolierten Systeme zu arbeiten und sie zu erforschen. Eine perfekte Isolation von der Umgebung ist jedoch nie möglich, so dass der fragile Zustand des Quantensystems leicht durch äußere Einflüsse gestört werden kann“, erläutert Erstautor David Fischer, der an der Universität Heidelberg studiert. Für Experimente in diesem Bereich ist es daher von großem Interesse, solche Störungen unter Kontrolle zu halten. „Diese Kontrolle ermöglicht es nicht nur, die Kohärenz des Systems zu gewährleisten, sondern kann auch gezielt dazu benutzt werden, um spezielle Zustände herbeizuführen“, betont Prof. Wimberger.

    Als geeignete Testobjekte haben sich in vielen Experimenten ultrakalte Atome erwiesen, die in sogenannte Potentialtöpfe gefüllt werden. Hier wird durch eine spezielle Laser-Anordnung eine Barriere erzeugt, durch die die Atome in einem kleinen Bereich eingesperrt sind. Werden nun mehrere Töpfe nahe genug zusammengebracht, haben die Atome die Möglichkeit, von einem Topf in einen benachbarten zu „tunneln“. Sie sind zwar immer noch innerhalb der Töpfe gefangen, können sich aber von Topf zu Topf bewegen, wie die Heidelberger Physiker erläutern. Die Temperatur der Atome, die nur knapp oberhalb des absoluten Nullpunkts von -273,15 Grad Celsius liegt, begünstigt dieses quantenmechanische Verhalten.

    Bei der Entwicklung ihres Modellsystems haben David Fischer und Sandro Wimberger ein an der Technischen Universität Kaiserslautern durchgeführtes Experiment reproduziert. Dort wurde das Verhalten von kalten Atomen in einer Kette von Potentialtöpfen untersucht. Die Forscher füllten die Kette dazu mit Atomen, leerten den mittleren Topf und beobachteten, wie dieser sich wieder mit Atomen aus den anderen Töpfen füllte. „Die Ergebnisse dieser Untersuchung legen nahe, dass bei diesem Vorgang Dekohärenz, also äußere Störeinflüsse, eine entscheidende Rolle spielt. Unklar ist jedoch, durch welche mikroskopischen Prozesse das Quantensystem mit der Umgebung wechselwirkt“, sagt David Fischer.

    In ihrer computergestützten Simulation des Wiederauffüll-Vorgangs haben die beiden Heidelberger Wissenschaftler nun verschiedene Hypothesen untersucht und sind dabei der Frage nachgegangen, welche Prozesse tatsächlich auf das Verhalten des Modellsystems einwirken. Dabei haben sie unter anderem beobachtet, wie sich die für den Wiederauffüllvorgang benötigte Zeit bei Variation der Systemparameter verändert. Diese Zeitdauer folgt einem Potenzgesetz – abhängig von der Dekohärenz-Rate, die die Forscher vorgegeben haben. „In der Physik ist das oftmals ein Zeichen für ein universelles Verhalten des Systems, das für alle Skalen gilt und somit das Gesamtproblem vereinfacht“, so Prof. Wimberger.

    Originalpublikation:
    D. Fischer und S. Wimberger: Models for a multimode bosonic tunneling junction, Ann. Phys. (2017) (published online 13 February 2017), doi: 10.1002/andp.201600327

    Kontakt:
    Prof. Dr. Sandro Wimberger
    Institut für Theoretische Physik
    Telefon (06221) 54-9449
    s.wimberger@thphys.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle
    Tel. +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Bilder

    Schematische Darstellung des Füllprozesses: Die Atome in den äußeren Potentialtöpfen (durch gelbe Kugeln dargestellt) bewegen sich wie durch die roten Pfeile angedeutet in den mittleren Topf.
    Schematische Darstellung des Füllprozesses: Die Atome in den äußeren Potentialtöpfen (durch gelbe Ku ...
    Grafik: David Fischer
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).