idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.03.2018 11:53

Optimized Powder Jet Perfects Laser Material Deposition

Petra Nolis M.A. Marketing & Kommunikation
Fraunhofer-Institut für Lasertechnik ILT

    The Fraunhofer Institute for Laser Technology ILT has developed an inline system for testing, qualifying and adjusting the focused powder jet of the nozzles of laser metal deposition machines. With this system, nozzles can be certified and the caustic characterized completely. The user can also visualize and monitor the process thanks to the camera module with integrated illumination.

    Laser Material Deposition has already proven itself in various areas – for example when repairing tools or applying anti-corrosion coatings. But the result depends considerably on how evenly the laser beam applies the powder since it is difficult to optimally adjust the process parameters, such as the speed and volume of the powder feed into the melt pool, which plays a decisive role. Before the process, nozzles and caustics must, therefore, be regularly checked, certified and calibrated. But the sequence of these steps has been very complex and cumbersome. Graduate engineer Oliver Nottrodt, project manager for Process Control and System Technology at Fraunhofer ILT says “An employee applied a powder trace on a metal sheet, which was then checked by an expert. But only a few specialists can perform this task in reproducible quality”.

    Integration in common systems

    This unsatisfactory situation motivated the Aachen engineers to develop a machine-supported inline process. The system solution consists of three main components: a camera module along with movable optics and illumination, all of which are mounted on the machining head. The nozzle is measured with a laser module, which is placed in the system. The control of these two modules is provided by electronics integrated either in a separate or the machine control cabinet. Nottrodt explains “For the documentation, it is important to know where the axes of the system are located. Their exact position can be transferred from the basic machine via common data bus interfaces”.

    In order to detect and measure the particle density distribution and caustics of the powder jet, the jet is illuminated with a laser line perpendicular to the powder gas flow and observed by the coaxially arranged camera through the powder nozzle. The system changes the relative position of the laser and the machining head several times for further measurements. Finally, the evaluation of 2,000 to 3,000 images shows the statistical distribution of the particles in one plane. “If I use this method to gradually capture the so-called caustics – i.e. the focusing area in which the powder particle beam is bundled – it can be calculated and characterized very precisely in terms of the most important parameters, such as the minimum diameter and the density distribution”, explains Nottrodt.

    Measuring system supports the work of the user

    The measuring system enables a user to measure and certify the powder feed nozzles and completely characterize the respective powder jet. It also helps set up the process by taking over a multitude of tasks from the user – such as measuring and marking the positions of the processing laser as well as documenting all work steps. Furthermore, the measuring system uses the geometric characteristics of the melt pool to monitor the laser metal deposition process, which it also visualizes and documents.

    Fraunhofer ILT at the CONTROL 2018

    Interested parties can find out more details from April 24 to 27, 2018 in Stuttgart at CONTROL 2018 at the joint booth of the Fraunhofer Alliance VISION 6302 in Hall 6. Fraunhofer ILT will be presenting a camera module with integrated lighting mounted on a typical working head. The Aachen engineers will demonstrate how the laser module functions on the computer.

    Contact

    Dipl.-Ing. Oliver Nottrodt
    Process Control and System Technology Group
    Telephone +49 241 8906-625
    oliver.nottrodt@ilt.fraunhofer.de


    Weitere Informationen:

    https://www.ilt.fraunhofer.de/en.html
    http://www.control-messe.de/en


    Bilder

    Keeping the process under control: Fraunhofer ILT has developed an inline measuring system for sophisticated additive laser processes, such as the Extreme High-Speed Laser Metal Deposition EHLA.
    Keeping the process under control: Fraunhofer ILT has developed an inline measuring system for sophi ...
    © Fraunhofer ILT, Aachen, Germany.
    None

    The new measuring system for measuring the powder jet as well as setting up and monitoring the process can be integrated into existing systems for laser metal deposition.
    The new measuring system for measuring the powder jet as well as setting up and monitoring the proce ...
    © Fraunhofer ILT, Aachen, Germany.
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Maschinenbau, Werkstoffwissenschaften
    überregional
    Buntes aus der Wissenschaft, Forschungs- / Wissenstransfer
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).